
Searching For Perfect Sequences

Jason Grout∗

July 11, 2002

Contents

1 Introduction 2

2 Perfect Sequences 2

3 Program 2

4 Variables 3

5 Checking for a Perfect Sequence 4
5.1 Check gamma . 4
5.2 Generating Cosets . 5
5.3 Finding Cosets in gamma . 6
5.4 Canceling Cosets . 9

6 Main Program 10
6.1 Iterating Through Sequences . 12
6.2 Checking All Shifts . 13

7 Printing 14
7.1 Print a Sequence . 14
7.2 Program Usage Message . 14

8 Header Files 14

9 Further Work 15

A Hardcoded Checks 15
∗grout@math.byu.edu

1

July 11, 2002 msri.nw 2

1 Introduction

In this paper, we implement an algorithm for exhaustively searching for perfect
sequences of arbitrary lengths with elements that are arbitrary roots of unity.
This algorithm was developed by the research group headed by Idris Mercer at
the MSRI Computational Number Theory Workshop in June 2002.

To calculate perfect sequences of length n composed of mth roots of unity,
run the program

./msri m n <starting sequence>

In order to search the entire search space, specify <starting sequence> as
0 0 ...0, where there are n zeros.

The perfect sequences will be printed out, preceded by an indication that
they passed the autocorrelation test. Sequences that are “almost” perfect–that
had an autocorrelation of zero for all but the last few shifts–are also printed
out, preceded by an indication that they failed the autocorrelation test (and
the shift they failed on as well). Also, the progress through the search space is
indicated by outputing the most recent major sequence that was checked.

2 Perfect Sequences

We consider a sequence of length n composed of mth roots of unity. A perfect
sequence is such a sequence in which all the acyclic autocorrelations are zero. If
the sequence under consideration is denoted [a0, a1, . . . , an−1], then the acyclic
autocorrelation is defined as

γk :=
n−1∑
j=0

aj aj+k,

where the j + k addition is taken mod n.
We use a technique that seems computationally efficient to test if a sequence

composed of mth roots of unity is perfect. We then iterate exhaustively through
all sequences of length n, testing each sequence.

3 Program

The general structure of the program is as follows.

2 〈* 2〉≡
〈Header Files 14c〉

〈Global Variables 3a〉

〈Global Functions 4b〉

〈Main Program 10〉

July 11, 2002 msri.nw 3

We will first discuss the various variables in the program (the “notation”),
and then discuss our algorithm for testing a perfect sequence. Following that
will be the implementation of our iterating process, the main program, and
various other miscellaneous items.

4 Variables

We store the sequence length under consideration in SEQUENCE LENGTH. The
number of roots of unity we are considering is stored in MAX VALUE (e.g., if we
are considering 6th roots of unity, then MAX VALUE is 6).

3a 〈Global Variables 3a〉≡ (2) 3b .

int SEQUENCE_LENGTH;
int MAX_VALUE;

Defines:
MAX VALUE, used in chunks 6a, 9, 10, 12a, 13b, and 16.
SEQUENCE LENGTH, used in chunks 4a, 7b, 9a, 10, and 12–16.

We store the sequence under consideration in sequence. This variable is
updated to exhaustively iterate through all sequences of size n. The values in
sequence represent the powers of a primitive root of unity. This allows us to
treat the roots of unity as a cyclic additive group of integers of order MAX VALUE.
The current autocorrelation we are considering (the shifted dot product of the
sequence) is stored in gamma. The variables are defined as pointers to integers
to allow us to dynamically allocate an arbitrary size array of integers in the
program.

3b 〈Global Variables 3a〉+≡ (2) / 3a 3c .

int *sequence;
int *gamma;

Defines:
gamma, used in chunks 7b, 9, 10, 13b, 15, and 16.
sequence, used in chunks 10 and 12–15.

In the algorithm, it will be necessary to “cancel out” items in the sequence.
Accordingly, we have a sentinel value we can set an element of the sequence or
shift with to indicate that the value has been canceled. This sentinel value is
CANCELED. It is necessary, then, that CANCELED be some integer that will not be
used in a normal sequence. Since we are always working mod n because we are
dealing with elements of the cyclic group, we will always have nonnegative values
in sequence and gamma. Therefore, a negative value will suffice for CANCELED.

3c 〈Global Variables 3a〉+≡ (2) / 3b 5 .

#define CANCELED -1
Defines:

CANCELED, used in chunks 7b, 9, 15, and 16.

July 11, 2002 msri.nw 4

5 Checking for a Perfect Sequence

The idea behind checking for a perfect sequence is straightforward. We are
working in the cyclic additive integer group of order MAX VALUE. An autocorre-
lation is just the sum of all the elements of gamma. In order for gamma to sum to
zero, we must have elements in gamma cancel out with each other. Therefore, to
check to see if we have a sum of zero, we just check that all the elements cancel
out. This is equivalent to checking to see if gamma is composed of full cosets.

5.1 Check gamma

Here we check to see if the elements of gamma sum to 0. To do this, we call our
generic check routine, which checks all possible cancellations. After calling this,
gammaElementsLeft is 0 if all the elements of gamma cancel.

Note that this check will destroy the elements in gamma.

4a 〈checkGamma Variables 4a〉≡ (4b) 6b .

int gammaElementsLeft=SEQUENCE_LENGTH;
Defines:

gammaElementsLeft, used in chunks 4b, 9b, and 16.
Uses SEQUENCE LENGTH 3a.

4b 〈Global Functions 4b〉≡ (2)

int checkGamma(void)
{
〈checkGamma Variables 4a〉

〈Check Condition 7b〉

/* The Hardcoded Check Condition is much faster,
but needs to be modified depending on what roots
of unity we are considering. */

/* <Hardcoded Check Condition>>*/

/* If we have canceled all the elements, then we are successful.
If there are elements left to cancel, then we failed. */

if(gammaElementsLeft == 0)
return 0;

else
return -1;

}
Defines:

checkGamma, used in chunk 13a.
Uses gammaElementsLeft 4a.

July 11, 2002 msri.nw 5

5.2 Generating Cosets

In order to know what we can cancel, we must first determine the cosets of the
cyclic group. In the cyclic group, the cosets are generated by the divisors of
MAX VALUE. We store these divisors in the array divisors. The indices in gamma
of the elements of a particular coset will be stored in the array cosetElements.

The value of MAX DIVISORS sets an upper limit on the number of divisors or
elements of a coset. This can be set arbitrarily large (but a larger value will
slow the program down a bit.

5 〈Global Variables 3a〉+≡ (2) / 3c

#define MAX_DIVISORS 10

int NUM_DIVISORS;
int divisors[MAX_DIVISORS];
int cosetElements[MAX_DIVISORS];

Defines:
cosetElements, used in chunk 9.
divisors, used in chunks 6a, 7b, and 9.
MAX DIVISORS, used in chunks 6a and 9a.
NUM DIVISORS, used in chunks 6a and 7b.

July 11, 2002 msri.nw 6

To populate divisors, we divide MAX VALUE by integers from MAX VALUE/2
down to 1. We store an integer k in the divisors array if k ≡ 0 mod MAX VALUE.
Since a larger k will have a smaller coset, we store the large values of k first.
It seems that this will be more efficient for the cancellation step, because in
general it will be faster to look for a coset having fewer elements. The last
divisor stored is always 1, which corresponds to the whole cyclic group.

If we reach the end of the divisors array, we stop to avoid an overflow error.
If this error comes up in running the program, it can be alleviated by increasing
MAX DIVISORS.

6a 〈Populate Divisor Array 6a〉≡ (10)

NUM_DIVISORS=0;
for(i=MAX_VALUE/2+1;i>0;i--)
{
if(MAX_VALUE%i==0)
{
divisors[NUM_DIVISORS]=i;
NUM_DIVISORS++;

if(NUM_DIVISORS==MAX_DIVISORS)
{
fprintf(stderr,

"Error: Cannot store all divisors"\
"of %d (there are at least %d of them)\n",
MAX_VALUE, NUM_DIVISORS);

assert(NUM_DIVISORS<MAX_DIVISORS);

}
}

}
Uses divisors 5, i 7a, MAX DIVISORS 5, MAX VALUE 3a, and NUM DIVISORS 5.

5.3 Finding Cosets in gamma

The variable currentDivisor holds the index of the divisor in divisors that
is generating the coset under consideration. The variable cosetElementsLeft
keeps track of how many elements in a particular coset we still need to find to
have a complete coset to cancel.

6b 〈checkGamma Variables 4a〉+≡ (4b) / 4a 7a .

int currentDivisor;
int cosetElementsLeft;

Defines:
cosetElementsLeft, used in chunks 7b and 9a.
currentDivisor, used in chunks 7b and 9.

July 11, 2002 msri.nw 7

For every element of a given shift gamma, we want to “cancel out” a full
coset containing that element. To do this, we iterate through all of the elements
of gamma. For each gamma[i], if it has not already been canceled out (and
hence is already a member of a coset), we search for a coset in gamma containing
gamma[i]. A full coset is indicated by cosetElementsLeft equaling 0 (which
means that all coset elements were found in the uncancelled elements of gamma).
If we find a full coset, then we cancel out each element in the coset by setting
it to CANCELED.

When we are done, either we have canceled out a coset or not. If we have
not canceled out a coset, then currentDivisor will equal NUM DIVISORS. In
this case, we cannot cancel gamma[i], and so we return with error.

7a 〈checkGamma Variables 4a〉+≡ (4b) / 6b 8 .

int i;
Defines:

i, used in chunks 6a, 7b, 9a, 10, and 13–16.

7b 〈Check Condition 7b〉≡ (4b)

for(i=0;i<SEQUENCE_LENGTH;i++)
{
if(gamma[i]==CANCELED)
continue;

/* Loop through all divisors */
for(currentDivisor=0;currentDivisor<NUM_DIVISORS;currentDivisor++)
{
/* Check to see if we have a full coset with this divisor */
〈Find Coset 9a〉;

/* If we have a full coset, then cancel the elements and break */
if(cosetElementsLeft==0)
{
〈Cancel Coset 9b〉;
break;

}
}

/* If we have reached the end of the divisor list without canceling,
then we must have failed */

if(currentDivisor==NUM_DIVISORS)
{
return -1;

}
}

Uses CANCELED 3c, cosetElementsLeft 6b, currentDivisor 6b, divisors 5, gamma 3b, i 7a,
NUM DIVISORS 5, and SEQUENCE LENGTH 3a.

July 11, 2002 msri.nw 8

The Find Coset procedure searches for a full coset generated by adding
multiples of divisors[currentDivisor] to gamma[i].

To do this, we first calculate the number of elements in this coset. This is
stored in cosetElementsLeft. We immediately subtract one from this because
we already have gamma[i].

For each remaining element of gamma[j] of gamma, we test to see if gamma[j]
is an element of the current coset. To test this, we see if we can add a multiple
k of divisors[currentDivisor] to gamma[i] and obtain gamma[j]. If we can,
and if we have not already found this element of the coset yet, then we store
j in cosetElements[k]. If we have found a new element of the coset, then we
decrement cosetElementsLeft and break if that was the last element.

Notice that we are adding MAX VALUE to gamma[i]-gamma[j]. This is be-
cause the % operator in C/C++ is not a true “mod” operator, but a “re-
mainder” operator. When we are working with nonnegative values, however,
these are equivalent operations. Since the elements of gamma are guaranteed
by construction to be nonnegative and less than MAX VALUE, and we are work-
ing mod MAX VALUE, adding MAX VALUE will ensure that we are dealing with
nonnegative values and that we will not be changing the answer.

8 〈checkGamma Variables 4a〉+≡ (4b) / 7a

int j;
Defines:

j, used in chunks 9 and 16.

July 11, 2002 msri.nw 9

9a 〈Find Coset 9a〉≡ (7b)

cosetElementsLeft=MAX_VALUE/divisors[currentDivisor]-1;
cosetElements[0]=i;

bzero(cosetElements, sizeof(int)*MAX_DIVISORS);

/* Search through the rest of [[gamma]] for cancellation */
for(j=i+1;j<SEQUENCE_LENGTH;j++)
{
if(gamma[j]==CANCELED)
continue;

if(gamma[i]!=gamma[j] &&
((gamma[i]-gamma[j]+MAX_VALUE)%(divisors[currentDivisor])==0))
{
/* We have a divisor */
/* If we do not have one for this slot of the coset,

then store this information in [[cosetElements]] */
if(cosetElements[((gamma[i]-gamma[j]+MAX_VALUE)%MAX_VALUE)

/(divisors[currentDivisor])]==0)
{
cosetElements[((gamma[i]-gamma[j]+MAX_VALUE)%MAX_VALUE)

/(divisors[currentDivisor])]=j;
cosetElementsLeft--;
if(cosetElementsLeft==0)
break;

}
}

}
Uses CANCELED 3c, cosetElements 5, cosetElementsLeft 6b, currentDivisor 6b, divisors 5,

gamma 3b, i 7a, j 8, MAX DIVISORS 5, MAX VALUE 3a, and SEQUENCE LENGTH 3a.

5.4 Canceling Cosets

Once we have found a full coset, we must cancel out each element of the coset
in gamma. We do this by setting each element of the coset to CANCELED.

9b 〈Cancel Coset 9b〉≡ (7b)

for(j=0;j<MAX_VALUE/divisors[currentDivisor];j++)
{
gamma[cosetElements[j]]=CANCELED;
gammaElementsLeft--;
cosetElements[j]=0;

}
Uses CANCELED 3c, cosetElements 5, currentDivisor 6b, divisors 5, gamma 3b,

gammaElementsLeft 4a, j 8, and MAX VALUE 3a.

July 11, 2002 msri.nw 10

6 Main Program

Here is the main program. We first set the values of MAX VALUE and SEQUENCE LENGTH
from the command line. We then create the arrays sequence and gamma.

10 〈Main Program 10〉≡ (2)

int main(int argc, char **argv)
{
int i;
int shift=1;
int index;

if(argc<3)
{
〈Print Usage 14b〉;
exit(-1);

}

MAX_VALUE = atoi(argv[1]);
SEQUENCE_LENGTH = atoi(argv[2]);

if(MAX_VALUE<3 || SEQUENCE_LENGTH<3)
{
〈Print Usage 14b〉;
exit(-1);

}

if(argc<(SEQUENCE_LENGTH+3))
{
〈Print Usage 14b〉;
exit(-1);

}

sequence = (int *)malloc(sizeof(int)*SEQUENCE_LENGTH);
gamma = (int *)malloc(sizeof(int)*SEQUENCE_LENGTH);

bzero(sequence, sizeof(int)*SEQUENCE_LENGTH);
bzero(gamma, sizeof(int)*SEQUENCE_LENGTH);

/* Populate the sequence */

July 11, 2002 msri.nw 11

〈Populate Divisor Array 6a〉

sequence[0]=sequence[1]=0;

/* Get starting sequence from command line */
for(i=0;i<SEQUENCE_LENGTH;i++)
{
sequence[i]=atoi(argv[i+3]);

}

〈Increment Sequence 12a〉
{
〈Check Shifts 13a〉;

/* If we get to here, then the sequence passes */
printf("PASSED: ");

〈Print sequence 14a〉
printf("\n");

NEXT:
}
〈Increment Sequence End 12b〉

DONE:

free(sequence);
free(gamma);

exit(0);
}

Defines:
main, never used.

Uses gamma 3b, i 7a, MAX VALUE 3a, printf 14b, sequence 3b, and SEQUENCE LENGTH 3a.

July 11, 2002 msri.nw 12

6.1 Iterating Through Sequences

This is our incrementing procedure. It will increment the sequence in sequence
to the next sequence in an odometer fashion. It will stop when we “roll over”
the sequence back to {0, 0, . . . , 0}.

To aid in debugging and seeing the program process the data, we print out
the sequence every time the number halfway through the sequence rolls over.

From the nature of the problem, we may assume that all sequences start
with a zero. This optimization is implemented in this incrementing routine.

12a 〈Increment Sequence 12a〉≡ (10)

while(1)
{
sequence[SEQUENCE_LENGTH-1]++;
sequence[SEQUENCE_LENGTH-1] %= MAX_VALUE;

/* Check to see if we are wrapped around */
index=SEQUENCE_LENGTH-1;
while(sequence[index]==0)
{

index--;
sequence[index]++;
sequence[index] %= MAX_VALUE;
if(sequence[index]!=0)
break;

if(index == (SEQUENCE_LENGTH/2))
{

printf("Finished sequences starting with ");

〈Print sequence 14a〉;

printf("\n");
}

if(index ==1)
{
/* We are done. We have wrapped around the first index */
goto DONE;

}
}

Uses MAX VALUE 3a, printf 14b, sequence 3b, and SEQUENCE LENGTH 3a.

Of course, we need to end the while loop that increments the sequence.

12b 〈Increment Sequence End 12b〉≡ (10)

}

July 11, 2002 msri.nw 13

6.2 Checking All Shifts

To check to make sure all the autocorrelations are zero, we only need to check
the first half of the shifts. The other shifts are equivalent to shifts in the
reverse direction. The variable shift runs through the shifts that we need
to consider. The variable gamma is updated to reflect each value of shift. If
the autocorrelation is not zero, and the shift is greater than a specific value,
then we print out the sequence. Notice that if we fail at any particular shift, we
move on to the next sequence. Thus, if we fail at a particular shift, it means we
have passed all shifts less than that shift.

13a 〈Check Shifts 13a〉≡ (10)

for(shift=1;shift<(SEQUENCE_LENGTH/2+1);shift++)
{
〈Update gamma 13b〉;

if(checkGamma())
{

/* Print out where we have failed */
if(shift>5)
{

printf("FAILED: ");

〈Print sequence 14a〉
printf(" at shift %d\n",shift);

}

/* Since we failed, go to the next sequence */
goto NEXT;

}
}

Uses checkGamma 4b, printf 14b, sequence 3b, and SEQUENCE LENGTH 3a.

To update gamma, we subtract corresponding elements of the shifted sequence
from the original sequence. Because we are working with the additive group of
powers, this is equivalent to multiplying the roots of unity in the sequence with
corresponding elements of the shifted, conjugated sequence. We also take the
result mod MAX VALUE to ensure the values of gamma are nonnegative and less
than MAX VALUE. (Notice we have to add MAX VALUE to the value before taking
the modulus because of the behavior of % in C.)

13b 〈Update gamma 13b〉≡ (13a)

for(i=0;i<SEQUENCE_LENGTH;i++)
{
gamma[i] = ((sequence[i]-sequence[((i-shift)+SEQUENCE_LENGTH)%SEQUENCE_LENGTH])

+ MAX_VALUE) % MAX_VALUE;
}

Uses gamma 3b, i 7a, MAX VALUE 3a, sequence 3b, and SEQUENCE LENGTH 3a.

July 11, 2002 msri.nw 14

7 Printing

Here are the output functions.

7.1 Print a Sequence

Here is our generic print sequence function.

14a 〈Print sequence 14a〉≡ (10 12a 13a)

for(i=0;i<SEQUENCE_LENGTH;i++)
{
printf("%d ", sequence[i]);

}
Uses i 7a, printf 14b, sequence 3b, and SEQUENCE LENGTH 3a.

7.2 Program Usage Message

The usage message for the program.

14b 〈Print Usage 14b〉≡ (10)

printf("Usage: %s <Root of Unity> <Sequence Length> <Starting Sequence Values>\n\n",
argv[0]);

printf("<Root Of Unity> and <Sequence Length> must each be greater than 2.\n");
printf("<Starting Sequence Values> is a space delimited listing \n"

"of length <Sequence Length> of nonnegative integers \n"
"less than <Root of Unity>.\n");

Defines:
printf, used in chunks 10 and 12–14.

8 Header Files

We have the standard header files.

14c 〈Header Files 14c〉≡ (2)

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>

July 11, 2002 msri.nw 15

9 Further Work

Further work on this program could include:

• Documenting rigorously the reasons behind some of our ideas and opti-
mizations, including

– Checking only half the shifts.
– Normalizing the sequence so the starting element can always be as-

sumed to be 0.

• Integrating in specialized functions to take care of small cases we are
interested in, such as the quartic or sextic roots of unity sequences.

• Ending the sequence search space at a specified sequence.

• Modify the program to allow the sequence lengths and roots of unity below
three.

• In some cases, we can assume that the first two elements of the sequence
are zero. We could modify the program to detect these cases and apply this
optimization.

• Take advantage of the symmetry among the different shifts to narrow the
search space quite a bit (e.g., perfect sequences are invariant under shifts).

A Hardcoded Checks

Here is a hardcoded check for the quartic case. This seems about twice as fast
as the general method on the quartic case.

15 〈Hardcoded Check Condition 15〉≡
int fail=0;

/* We search through every element of the sequence */
for(i=0;i<SEQUENCE_LENGTH;i++)
{
/* If we have yanked the element, then continue */
if(gamma[i]==CANCELED)
continue;

〈Hardcoded Quartic Divisor Check 16〉;

/* If we have failed, return with error */
if(fail)
return -1;

}
Defines:

fail, used in chunk 16.
Uses CANCELED 3c, gamma 3b, i 7a, sequence 3b, and SEQUENCE LENGTH 3a.

July 11, 2002 msri.nw 16

Here is the actual check.

16 〈Hardcoded Quartic Divisor Check 16〉≡ (15)

fail=1;
for(j=i+1;j<SEQUENCE_LENGTH;j++)
{
if(gamma[j] == CANCELED)

continue;

if(gamma[j] == ((gamma[i]+2)%MAX_VALUE))
{
gamma[i]=CANCELED;
gamma[j]=CANCELED;
gammaElementsLeft -= 2;
fail=0;
break;

}
}

Uses CANCELED 3c, fail 15, gamma 3b, gammaElementsLeft 4a, i 7a, j 8, MAX VALUE 3a,
and SEQUENCE LENGTH 3a.

July 11, 2002 msri.nw 17

Index

Identifiers

CANCELED: 3c, 7b, 9a, 9b, 15, 16
checkGamma: 4b, 13a
cosetElements: 5, 9a, 9b
cosetElementsLeft: 6b, 7b, 9a
currentDivisor: 6b, 7b, 9a, 9b
divisors: 5, 6a, 7b, 9a, 9b
fail: 15, 16
gamma: 3b, 7b, 9a, 9b, 10, 13b, 15, 16
gammaElementsLeft: 4a, 4b, 9b, 16
i: 6a, 7a, 7b, 9a, 10, 13b, 14a, 15, 16
j: 8, 9a, 9b, 16
main: 10
MAX DIVISORS: 5, 6a, 9a
MAX VALUE: 3a, 6a, 9a, 9b, 10, 12a, 13b, 16
NUM DIVISORS: 5, 6a, 7b
printf: 10, 12a, 13a, 14a, 14b
sequence: 3b, 10, 12a, 13a, 13b, 14a, 15
SEQUENCE LENGTH: 3a, 4a, 7b, 9a, 10, 12a, 13a, 13b, 14a, 15, 16

Code Chunks

〈* 2〉
〈Cancel Coset 9b〉
〈Check Condition 7b〉
〈Check Shifts 13a〉
〈checkGamma Variables 4a〉
〈Find Coset 9a〉
〈Global Functions 4b〉
〈Global Variables 3a〉
〈Hardcoded Check Condition 15〉
〈Hardcoded Quartic Divisor Check 16〉
〈Header Files 14c〉
〈Increment Sequence 12a〉
〈Increment Sequence End 12b〉
〈Main Program 10〉
〈Populate Divisor Array 6a〉
〈Print sequence 14a〉
〈Print Usage 14b〉
〈Update gamma 13b〉

