## Perfect Sequences of $m$ th Roots of Unity

Idris Mercer, Celeste Elton, Jason Grout, Travis Kidd, Eric Merchant, Vijay Sookdeo, Wayne Tarrant

June 28, 2002

## Notation

Finite sequences of length $n,\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]$ such that $a_{j}^{m}=1$ for all $j$.

Particularly interested in $m \in\{2,3,4,6\}$.

## Autocorrelation

Cyclic Autocorrelation

$$
\gamma_{k}:=\sum_{j=0}^{n-1} \overline{a_{j}} a_{j+k}
$$

(with $j+k$ taken $\bmod n$.)
Acyclic Autocorrelation

$$
c_{k}:=\sum_{j=0}^{n-k-1} \overline{a_{j}} a_{j+k}
$$

## Necessary Conditions

- $p^{n}$ th roots of unity cancel in size $p$ cosets, so a perfect sequence must be of size $k p$ for some $k \in \mathbb{N}$.
- $\left|a_{0}+a_{1}+\cdots+a_{n-1}\right|^{2}=n$ means $n$ factors as $A \bar{A}$ for some $A \in \mathbb{Z}[\omega]$.


## Results from Turyn (1968)

A perfect sequence can be constructed

1. Of length $m^{2}$ using $m$ th roots of unity.

$$
\begin{array}{r}
{[0 \cdot 0, \ldots, 0 \cdot(m-1), 1 \cdot 0, \ldots, 1 \cdot(m-1), \ldots,} \\
(m-1) \cdot(m-1)]
\end{array}
$$

2. Of length $m$ using $m$ th roots, if $m=p^{r}, p$ an odd prime.

$$
\left[0^{2}, 1^{2}, \ldots,(m-1)^{2}\right]
$$

3. If length $n_{1}$ and $n_{2}$ exist and are relatively prime, then length $n_{1} \cdot n_{2}$ exists, using roots $\mathrm{Icm}\left(m_{1}, m_{2}\right)$. Constructed by pointwise dot product.

## Our Results

A perfect sequence of length $2^{2 k-1}$ using $2^{k}$ th roots of unity

Example: A sequence of length 8 using 16th roots of unity.

$$
\left[0^{2}, 1^{2}, \ldots, 7^{2}\right]=[0,1,4,9,0,9,4,1]
$$

Therefore perfect sequences of all lengths exist.

This also gives us the obvious $[1, i]$ perfect sequence with quartic roots of unity.

## Computational Results

| Length | Root of Unity | Number |
| :---: | :---: | :---: |
| 2 | 4 |  |
| 3 | 3 | 6 |
| 4 | 2 | 4 |
| 5 | 5 | 20 |
| 6 | 12 | 12 |
| 7 | 7 | 42 |
| 8 | 4 | 32 |
| 9 | 3 | 54 |
| 10 | $\leq 20$ |  |
| 11 | 11 |  |
| 12 | $6 ?$ |  |
| 13 | 13 |  |
| 14 | $\leq 28$ |  |
| 15 | $\leq 15$ |  |
| 16 | 4 |  |
| 17 | 17 |  |
| 18 | $\leq 12$ |  |
| 19 | 19 |  |
| 20 | $\leq 10$ |  |

- The algorithm found a perfect sequence of length 8 with quartic roots of unity. In general, is there a sequence of length $p^{3}$ using $p^{2}$ roots?
- For all examples of sequences of length $n$ using $m$ th roots of unity, we noticed

$$
\operatorname{gcd}(n, m)=\min (n, m)
$$

In the case $m$ a prime, this is true. Is this always the case?

- Does there exist an example of a perfect sequence of length $n$ using $m$ th roots of unity where $n>m^{2}$ ?


## Obtaining slides and program

Slides and documented C program available at http://math.byu.edu/~grout/msri.

