Perfect Sequences of mth Roots of Unity

Idris Mercer, Celeste Elton, Jason Grout, Travis Kidd, Eric Merchant, Vijay Sookdeo, Wayne Tarrant

June 28, 2002

Notation

Finite sequences of length n, $[a_0, a_1, \ldots, a_{n-1}]$ such that $a_j^m = 1$ for all j.

Particularly interested in $m \in \{2, 3, 4, 6\}$.

Autocorrelation

Cyclic Autocorrelation

$$\gamma_k := \sum_{j=0}^{n-1} \overline{a_j} a_{j+k}$$

(with j + k taken mod n.)

Acyclic Autocorrelation

$$c_k := \sum_{j=0}^{n-k-1} \overline{a_j} \, a_{j+k}$$

Necessary Conditions

- pⁿth roots of unity cancel in size p cosets, so a perfect sequence must be of size kp for some k ∈ N.
- $|a_0 + a_1 + \dots + a_{n-1}|^2 = n$ means n factors as $A\overline{A}$ for some $A \in \mathbb{Z}[\omega]$.

Results from Turyn (1968)

A perfect sequence can be constructed

- 1. Of length m^2 using mth roots of unity. $[0 \cdot 0, \dots, 0 \cdot (m-1), 1 \cdot 0, \dots, 1 \cdot (m-1), \dots, (m-1) \cdot (m-1)]$
- 2. Of length m using mth roots, if $m = p^r$, p an odd prime.

$$[0^2, 1^2, \ldots, (m-1)^2]$$

3. If length n_1 and n_2 exist and are relatively prime, then length $n_1 \cdot n_2$ exists, using roots $lcm(m_1, m_2)$. Constructed by pointwise dot product.

Our Results

A perfect sequence of length 2^{2k-1} using 2^k th roots of unity

Example: A sequence of length 8 using 16th roots of unity.

 $[0^2, 1^2, \dots, 7^2] = [0, 1, 4, 9, 0, 9, 4, 1]$

Therefore perfect sequences of all lengths exist.

This also gives us the obvious [1, i] perfect sequence with quartic roots of unity.

Computational Results

Length	Root of Unity	Number
2	4	
3	3	6
4	2 5	4
5	5	20
6	12	12
7	7	42
8	4	32
9	3	54
10	≤ 20	
11	11	
12	6?	
13	13	
14	\leq 28	
15	≤ 15	
16	4	
17	17	
18	≤ 12	
19	19	
20	\leq 10	

- The algorithm found a perfect sequence of length 8 with quartic roots of unity. In general, is there a sequence of length p^3 using p^2 roots?
- For all examples of sequences of length *n* using *m*th roots of unity, we noticed

gcd(n,m) = min(n,m).

In the case m a prime, this is true. Is this always the case?

• Does there exist an example of a perfect sequence of length n using mth roots of unity where $n > m^2$?

Obtaining slides and program

Slides and documented C program available at http://math.byu.edu/~grout/msri.