Discovering Graph Theory Relationships Using a Graph Database

Jason Grout

Department of Mathematics
Brigham Young University

Mathfest 2005

Outline

(1) Graph Database

(2) The Vision

(3) Potential Problems

(4) Summary

Graph Database

http://math.byu.edu/~grout/graphs

- All $(13,598)$ graphs up through 8 vertices.
- Includes data on most major graph invariants.
- Includes pictures of graphs.
- Easily searchable.

I can email you several nages of exercises to use with the database.

Graph Database

http://math.byu.edu/~grout/graphs

- All $(13,598)$ graphs up through 8 vertices.
- Includes data on most major graph invariants.
- Includes pictures of graphs.
- Easily searchable.

I can email you several pages of exercises to use with the database.

Graph Database

http://math.byu.edu/~grout/graphs

- All $(13,598)$ graphs up through 8 vertices.
- Includes data on most major graph invariants.
- Includes pictures of graphs.
- Easily searchable.

I can email you several nages of exercises to use with the database.

Graph Database

http://math.byu.edu/~grout/graphs

- All $(13,598)$ graphs up through 8 vertices.
- Includes data on most major graph invariants.
- Includes pictures of graphs.
- Easily searchable.

I can email you several pages of exercises to use with the database.

Graph Database

http://math.byu.edu/~grout/graphs

- All $(13,598)$ graphs up through 8 vertices.
- Includes data on most major graph invariants.
- Includes pictures of graphs.
- Easily searchable.

I can email you several pages of exercises to use with the database.

Graph Database

http://math.byu.edu/~grout/graphs

- All $(13,598)$ graphs up through 8 vertices.
- Includes data on most major graph invariants.
- Includes pictures of graphs.
- Easily searchable.

I can email you several pages of exercises to use with the database.

The Vision

Students are

- Motivated and exploring examples;
- Conjecturing relationships;
- Proving or disproving conjectures;
- Checking their work.

The Vision

Students are

- Motivated and exploring examples;
- Conjecturing relationships;
- Proving or disproving conjectures;
- Checking their work.

The Vision

Students are

- Motivated and exploring examples;
- Conjecturing relationships;
- Proving or disproving conjectures;
- Checking their work.

The Vision

Students are

- Motivated and exploring examples;
- Conjecturing relationships;
- Proving or disproving conjectures;
- Checking their work.

Potential Problem: Arbitrary Relationships

Relationships can seem arbitrary and unmotivated.

Example

The sum of the degrees of the vertices is twice the number of edges.

If G is connected and planar with $v \geq 3$ vertices and e edges, and G has no induced triangles, then $e \leq 2 v-4$.

Potential Problem: Arbitrary Relationships

Relationships can seem arbitrary and unmotivated.

Example

The sum of the degrees of the vertices is twice the number of edges.

Example

If G is connected and planar with $v \geq 3$ vertices and e edges, and G has no induced triangles, then $e \leq 2 v-4$.

Potential Problem: Large Data Sets

Large data sets make conjecturing difficult.

Example

Conjecture and prove a relationship between the degrees of a graph and whether the graph is Eulerian or not.
(Only 15 out of the 143 connected graphs on 6 or less vertices are Eulerian).

Potential Problem: Large Data Sets

Large data sets make conjecturing difficult.

Example

Conjecture and prove a relationship between the degrees of a graph and whether the graph is Eulerian or not.
(Only 15 out of the 143 connected graphs on 6 or less vertices are Eulerian).

Potential Problem: Checking Work

There is no outside source to check work.

Example

Determine whether a given 8 vertex graph is planar.
\square Find all the Hamiltonian cycles in a given graph.

Potential Problem: Checking Work

There is no outside source to check work.

Example

Determine whether a given 8 vertex graph is planar.

Example

Find all the Hamiltonian cycles in a given graph.

Summary

The graph database can help with the problems of:

- Motivating students to conjecture relationships;
- Exploring large numbers of examples easily;
- Checking work.

http://math.byu .edu/~grout/graphs

