Discovering Graph Theory Relationships Using a Graph Database

Jason Grout

Department of Mathematics Brigham Young University

Mathfest 2005

Outline

Jason Grout (grout@math.byu.edu) http://math.byu.edu/~grout/graphs

< A

http://math.byu.edu/~grout/graphs

- All (13,598) graphs up through 8 vertices.
- Includes data on most major graph invariants.
- Includes pictures of graphs.
- Easily searchable.

http://math.byu.edu/~grout/graphs

All (13,598) graphs up through 8 vertices.

- Includes data on most major graph invariants.
- Includes pictures of graphs.
- Easily searchable.

http://math.byu.edu/~grout/graphs

- All (13,598) graphs up through 8 vertices.
- Includes data on most major graph invariants.
- Includes pictures of graphs.
- Easily searchable.

http://math.byu.edu/~grout/graphs

- All (13,598) graphs up through 8 vertices.
- Includes data on most major graph invariants.
- Includes pictures of graphs.
- Easily searchable.

http://math.byu.edu/~grout/graphs

- All (13,598) graphs up through 8 vertices.
- Includes data on most major graph invariants.
- Includes pictures of graphs.
- Easily searchable.

http://math.byu.edu/~grout/graphs

- All (13,598) graphs up through 8 vertices.
- Includes data on most major graph invariants.
- Includes pictures of graphs.
- Easily searchable.

Students are

• Motivated and exploring examples;

- Conjecturing relationships;
- Proving or disproving conjectures;
- Checking their work.

< 6 b

Students are

- Motivated and exploring examples;
- Conjecturing relationships;
- Proving or disproving conjectures;
- Checking their work.

< 6 b

Students are

- Motivated and exploring examples;
- Conjecturing relationships;
- Proving or disproving conjectures;
- Checking their work.

< A

Students are

- Motivated and exploring examples;
- Conjecturing relationships;
- Proving or disproving conjectures;
- Checking their work.

Potential Problem: Arbitrary Relationships

Relationships can seem arbitrary and unmotivated.

Example

The sum of the degrees of the vertices is twice the number of edges.

Example

If G is connected and planar with $v \ge 3$ vertices and e edges, and G has no induced triangles, then $e \le 2v - 4$.

Potential Problem: Arbitrary Relationships

Relationships can seem arbitrary and unmotivated.

Example

The sum of the degrees of the vertices is twice the number of edges.

Example

If *G* is connected and planar with $v \ge 3$ vertices and *e* edges, and *G* has no induced triangles, then $e \le 2v - 4$.

A (10) A (10)

Potential Problem: Large Data Sets

Large data sets make conjecturing difficult.

Example

Conjecture and prove a relationship between the degrees of a graph and whether the graph is Eulerian or not.

(Only 15 out of the 143 connected graphs on 6 or less vertices are Eulerian).

A (10) > A (10) > A (10)

Potential Problem: Large Data Sets

Large data sets make conjecturing difficult.

Example

Conjecture and prove a relationship between the degrees of a graph and whether the graph is Eulerian or not.

(Only 15 out of the 143 connected graphs on 6 or less vertices are Eulerian).

Potential Problem: Checking Work

There is no outside source to check work.

	Example
I	Determine whether a given 8 vertex graph is planar.
	Example

Find all the Hamiltonian cycles in a given graph.

Potential Problem: Checking Work

There is no outside source to check work.

Example

Determine whether a given 8 vertex graph is planar.

Example

Find all the Hamiltonian cycles in a given graph.

A (10) A (10) A (10)

Summary

The graph database can help with the problems of:

- Motivating students to conjecture relationships;
- Exploring large numbers of examples easily;
- Checking work.

http://math.byu.edu/~grout/graphs

4 **A b b b b b b**