The Minimum Rank Problem for Finite Fields

Wayne Barrett (BYU) Jason Grout (BYU) Don March (BYU)

August 2005

References

Barrett, van der Holst, Loewy, Graphs whose Minimal Rank is Two, Electronic Journal of Linear Algebra, volume 11 (2004), pp. 258–280

Barrett, van der Holst, Loewy, Graphs whose Minimal Rank is Two, Electronic Journal of Linear Algebra, volume 11 (2004), pp. 258–280

Barrett, Grout, March, The Minimal Rank Problem over a Finite Field, in preparation.

Example of S(F,G)

 $d_1,\ldots d_5\in F.$

Replace *s with any nonzero elements of F.

rank A = 2, so mr(\mathbb{R}, G) = 2 and mr(F_3, G) = 2.

But in F_2 , 2 = 0, so $A \notin S(F_2, G)$.

Example: Computing min rank in F_2

 $F = F_2$:

Any
$$A \in S(F_2, G)$$
 has form
$$\begin{bmatrix} d_1 & 1 & 1 & 1 & 0 \\ 1 & d_2 & 1 & 1 & 0 \\ 1 & 1 & d_3 & 1 & 1 \\ 1 & 1 & 1 & d_4 & 1 \\ 0 & 0 & 1 & 1 & d_5 \end{bmatrix}$$

 $A[145|235] = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & d_5 \end{bmatrix}$ has determinant 1 so rank $A \ge 3$.

Therefore $mr(F_2, G) \geq 3$.

Idea of Algorithm

To find the graphs characterizing $\{G \mid mr(F,G) \leq k\}$:

- 1. Construct all matrices A of rank $\leq k$ over F. Use the fact $A = U^t BU \iff \operatorname{rank}(A) \leq k.$ (B is $k \times k$, rank k; U is $k \times n$.)
- 2. Return non-isomorphic graphs corresponding to matrices.

Problem: Too many matrices.

Solution: We only need the zero-nonzero patterns for the matrices. Be smarter by understanding $A = U^t B U$ better.

$$A = U^t B U$$

Feature/operation on U	Effect on graph correspond-	
	ing to A	
Column in U	vertex in graph	
Column in U isotropic wrt B	zero entry for the vertex on di-	
	agonal	
Column in U not isotropic	nonzero entry for the vertex on	
wrt B	diagonal	
Two columns orthogonal	no edge between corresponding	
wrt B	vertices (zero matrix entry)	
Two columns not orthogo-	edge between corresponding	
nal wrt B	vertices (nonzero matrix entry)	

 $A = U^t B U$

Feature/operation on U	Effect on graph correspond-	
	ing to A	
Duplicate columns	independent set, vertices have	
(isotropic)	same neighbors	
Duplicate columns	clique, vertices have same	
(non-isotropic)	neighbors	
Columns multiples of each	corresponding vertices have	
other	same neighbors (remember,	
	only the zero-nonzero pattern	
	is needed, and there are no zero	
	divisors in F)	
Interchanging two columns	relabel vertices	

- black vertex \iff clique
- white vertex \iff independent set
- edge \iff all possible edges
- cliques or independent sets can be empty

Algorithm

To find the graphs characterizing $\{G \mid mr(F,G) \leq k\}$:

- 1. Find a maximal set of k-dimension vectors in F such that no vector is a multiple of any other. These are columns in U.
- 2. Construct all *interesting* matrices A of rank $\leq k$ over F. Use the fact

$$A = U^t B U \iff \operatorname{rank}(A) \le k.$$

 $(B \text{ is } k \times k, \text{ rank } k; U \text{ is } k \times n.)$

3. Return non-isomorphic *marked* graphs corresponding to matrices.

Characterizing marked graphs for F_3

Rank	Vertices	Edges
2	5	5
2	5	4
3	14	54
4	41	525
4	41	528
5	122	4 860
6	365	44 100
6	365	44 109
7	1094	398 034

Finding forbidden subgraphs

Let S be the set of marked subgraphs of our characterizing graphs.

For each (normal) graph G

- 1. Construct the set T of possible marked graphs for G (can do this in exponential time).
- 2. If $S \cap T \neq \emptyset$, then G is a substitution graph of the characterizing graphs.
- 3. If $S \cap T = \emptyset$, then G is forbidden.

Open Questions

- Given a finite field F and positive integer k, what is a good upper bound for the number of vertices in minimal forbidden subgraphs?
- Is the bound 8 for $F = F_2$ and k = 3?
- Let G be any graph and let F be a finite field, char $F \neq 2$. Is $mr(\mathbb{R}, G) \leq mr(F, G)$? (true if $mr(\mathbb{R}, G) \leq 3$).