The Minimum Rank Problem for Finite Fields

Wayne Barrett (BYU)
Jason Grout (BYU)
Don March (BYU)
August 2005

References

Barrett, van der Holst, Loewy, Graphs whose Minimal Rank is Two, Electronic Journal of Linear Algebra, volume 11 (2004), pp. 258-280

Barrett, van der Holst, Loewy, Graphs whose Minimal Rank is Two, Electronic Journal of Linear Algebra, volume 11 (2004), pp. 258-280

Barrett, Grout, March, The Minimal Rank Problem over a Finite Field, in preparation.

Example of $S(F, G)$

Replace ${ }^{*}$ s with any nonzero elements of F.

Example: Computing min rank in \mathbb{R}, F_{2}, F_{3}

$$
F=\mathbb{R}, F_{3}:
$$

$$
A=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]+\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 2 & 2 & 1 \\
1 & 1 & 2 & 2 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

$$
\operatorname{rank} A=2, \text { so } \operatorname{mr}(\mathbb{R}, G)=2 \text { and } \operatorname{mr}\left(F_{3}, G\right)=2
$$

But in $F_{2}, 2=0$, so $A \notin S\left(F_{2}, G\right)$.

Example: Computing min rank in F_{2}

$F=F_{2}:$
Any $A \in S\left(F_{2}, G\right)$ has form $\left[\begin{array}{ccccc}d_{1} & 1 & 1 & 1 & 0 \\ 1 & d_{2} & 1 & 1 & 0 \\ 1 & 1 & d_{3} & 1 & 1 \\ 1 & 1 & 1 & d_{4} & 1 \\ 0 & 0 & 1 & 1 & d_{5}\end{array}\right]$.
$A[145 \mid 235]=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & d_{5}\end{array}\right]$ has determinant 1 so rank $A \geq 3$.
Therefore $\operatorname{mr}\left(F_{2}, G\right) \geq 3$.

Idea of Algorithm

To find the graphs characterizing $\{G \mid \operatorname{mr}(F, G) \leq k\}$:

1. Construct all matrices A of rank $\leq k$ over F. Use the fact

$$
A=U^{t} B U \Longleftrightarrow \operatorname{rank}(A) \leq k
$$

(B is $k \times k$, rank k; U is $k \times n$.)
2. Return non-isomorphic graphs corresponding to matrices.

Problem: Too many matrices.
Solution: We only need the zero-nonzero patterns for the matrices. Be smarter by understanding $A=U^{t} B U$ better.

$$
A=U^{t} B U
$$

Feature/operation on U	Effect on graph correspond- ing to A
Column in U	vertex in graph
Column in U isotropic wrt B	zero entry for the vertex on di- agonal
Column in U not isotropic	nonzero entry for the vertex on diagonal
wrt B	no edge between corresponding
Two columns orthogonal	vertices (zero matrix entry)
wrt B	vertices (nonzero matrix entry)

$$
A=U^{t} B U
$$

Feature/operation on U	Effect on graph correspond- ing to A
Duplicate columns	independent set, vertices have same neighbors
(isotropic)	clique, vertices have same (non-isotropic) neighbors
Columns multiples of each	corresponding vertices have other same neighbors (remember, only the zero-nonzero pattern
	is needed, and there are no zero divisors in F)
Interchanging two columns	relabel vertices

- black vertex \Longleftrightarrow clique
- white vertex \Longleftrightarrow independent set
- edge \Longleftrightarrow all possible edges
- cliques or independent sets can be empty

Algorithm

To find the graphs characterizing $\{G \mid \operatorname{mr}(F, G) \leq k\}$:

1. Find a maximal set of k-dimension vectors in F such that no vector is a multiple of any other. These are columns in U.
2. Construct all interesting matrices A of rank $\leq k$ over F. Use the fact

$$
A=U^{t} B U \Longleftrightarrow \operatorname{rank}(A) \leq k
$$

(B is $k \times k$, rank k; U is $k \times n$.)
3. Return non-isomorphic marked graphs corresponding to matrices.

Characterizing marked graphs for F_{3}

Rank	Vertices	Edges
2	5	5
2	5	4
3	14	54
4	41	525
4	41	528
5	122	4860
6	365	44100
6	365	44109
7	1094	398034

Finding forbidden subgraphs

Let S be the set of marked subgraphs of our characterizing graphs.

For each (normal) graph G

1. Construct the set T of possible marked graphs for G (can do this in exponential time).
2. If $S \cap T \neq \emptyset$, then G is a substitution graph of the characterizing graphs.
3. If $S \cap T=\emptyset$, then G is forbidden.

Open Questions

- Given a finite field F and positive integer k, what is a good upper bound for the number of vertices in minimal forbidden subgraphs?
- Is the bound 8 for $F=F_{2}$ and $k=3$?
- Let G be any graph and let F be a finite field, char $F \neq 2$. Is $\operatorname{mr}(\mathbb{R}, G) \leq \operatorname{mr}(F, G)$? (true if $\operatorname{mr}(\mathbb{R}, G) \leq 3)$.

