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Example of S(F, G)

1

2

3

4

5 ⇐⇒





d1 ∗ ∗ ∗ 0
∗ d2 ∗ ∗ 0
∗ ∗ d3 ∗ ∗
∗ ∗ ∗ d4 ∗
0 0 ∗ ∗ d5





d1, . . . d5 ∈ F .

Replace *s with any nonzero elements of F .

3



Example: Computing min rank in R, F2, F3

F = R, F3:

A =





1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
0 0 0 0 0




+





0 0 0 0 0
0 0 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1




=





1 1 1 1 0
1 1 1 1 0
1 1 2 2 1
1 1 2 2 1
0 0 1 1 1





rankA = 2, so mr(R, G) = 2 and mr(F3, G) = 2.

But in F2, 2 = 0, so A /∈ S(F2, G).
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Example: Computing min rank in F2

F = F2:

Any A ∈ S(F2, G) has form





d1 1 1 1 0
1 d2 1 1 0
1 1 d3 1 1
1 1 1 d4 1
0 0 1 1 d5




.

A[145|235] =




1 1 0
1 1 1
0 1 d5



 has determinant 1 so rankA ≥ 3.

Therefore mr(F2, G) ≥ 3.
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Idea of Algorithm

To find the graphs characterizing {G | mr(F, G) ≤ k}:

1. Construct all matrices A of rank ≤ k over F . Use the fact

A = UtBU ⇐⇒ rank(A) ≤ k.

(B is k × k, rank k; U is k × n.)

2. Return non-isomorphic graphs corresponding to matrices.

Problem: Too many matrices.

Solution: We only need the zero-nonzero patterns for the ma-
trices. Be smarter by understanding A = UtBU better.
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A = UtBU

Feature/operation on U Effect on graph correspond-

ing to A
Column in U vertex in graph
Column in U isotropic wrt B zero entry for the vertex on di-

agonal
Column in U not isotropic
wrt B

nonzero entry for the vertex on
diagonal

Two columns orthogonal
wrt B

no edge between corresponding
vertices (zero matrix entry)

Two columns not orthogo-

nal wrt B

edge between corresponding

vertices (nonzero matrix entry)
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A = UtBU

Feature/operation on U Effect on graph correspond-

ing to A
Duplicate columns
(isotropic)

independent set, vertices have
same neighbors

Duplicate columns

(non-isotropic)

clique, vertices have same

neighbors
Columns multiples of each
other

corresponding vertices have
same neighbors (remember,

only the zero-nonzero pattern
is needed, and there are no zero

divisors in F)
Interchanging two columns relabel vertices
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⇐⇒

• black vertex ⇐⇒ clique

• white vertex ⇐⇒ independent set

• edge ⇐⇒ all possible edges

• cliques or independent sets can be empty
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Algorithm

To find the graphs characterizing {G | mr(F, G) ≤ k}:

1. Find a maximal set of k-dimension vectors in F such that no
vector is a multiple of any other. These are columns in U .

2. Construct all interesting matrices A of rank ≤ k over F . Use
the fact

A = UtBU ⇐⇒ rank(A) ≤ k.

(B is k × k, rank k; U is k × n.)

3. Return non-isomorphic marked graphs corresponding to ma-
trices.
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Characterizing marked graphs for F3

Rank Vertices Edges
2 5 5
2 5 4
3 14 54
4 41 525
4 41 528
5 122 4 860
6 365 44 100
6 365 44 109
7 1094 398 034
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Finding forbidden subgraphs

Let S be the set of marked subgraphs of our characterizing
graphs.

For each (normal) graph G

1. Construct the set T of possible marked graphs for G (can do
this in exponential time).

2. If S ∩ T )= ∅, then G is a substitution graph of the character-
izing graphs.

3. If S ∩ T = ∅, then G is forbidden.
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Open Questions

• Given a finite field F and positive integer k, what is a good
upper bound for the number of vertices in minimal forbidden
subgraphs?

• Is the bound 8 for F = F2 and k = 3?

• Let G be any graph and let F be a finite field, char F )= 2.
Is mr(R, G) ≤ mr(F, G)? (true if mr(R, G) ≤ 3).
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