The Minimum Rank Problem for Finite

Fields

Wayne Barrett (BYU)
Jason Grout (BYU)
Don March (U of Florida)

October 2005

Correspondence of G and matrices

Replace the ${ }^{*}$ s with any nonzero elements of F.
$\operatorname{mr}(F, G)=$ minimum rank of corresponding matrices.

Example: Computing min rank in \mathbb{R}, F_{2}, F_{3}

$$
\begin{aligned}
& F=\mathbb{R}, F_{3}:\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]+\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 2 & 2 & 1 \\
1 & 1 & 2 & 2 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

$\operatorname{rank} A=2$, so $\operatorname{mr}(\mathbb{R}, G)=2$ and $\operatorname{mr}\left(F_{3}, G\right)=2$.

But in $F_{2}, 2=0$, so A doesn't correspond to G.

Example: Computing min rank in F_{2}

$$
F=F_{2}:
$$

Any $A \in S\left(F_{2}, G\right)$ has form $\left[\begin{array}{ccccc}d_{1} & 1 & 1 & 1 & 0 \\ 1 & d_{2} & 1 & 1 & 0 \\ 1 & 1 & d_{3} & 1 & 1 \\ 1 & 1 & 1 & d_{4} & 1 \\ 0 & 0 & 1 & 1 & d_{5}\end{array}\right]$.
$A[145 \mid 235]=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & d_{5}\end{array}\right]$ has determinant 1 so rank $A \geq 3$.
Therefore $\operatorname{mr}\left(F_{2}, G\right) \geq 3$.

Idea of Classification

To find the graphs characterizing $\{G \mid \operatorname{mr}(F, G) \leq k\}$:

1. Construct all matrices A of rank $\leq k$ over F.

$$
A=U^{t} B U \Longleftrightarrow \operatorname{rank}(A) \leq k
$$

(B is $k \times k$, rank k; U is $k \times n$.)
2. Return non-isomorphic graphs of the matrices.

Problem: Too many matrices.

Solution: We only need the zero-nonzero patterns for the matrices. Be smarter by understanding $A=U^{t} B U$ better.

$$
A=U^{t} B U, a_{i j}=\left(u_{i}, u_{j}\right)
$$

Feature/operation on U	Effect on graph correspond- ing to A
Column in U	vertex in graph
Interchanging two columns	relabel vertices
Column in U isotropic wrt B	no loop at vertex (zero entry on diagonal)
Column in U not isotropic	loop at vertex (nonzero entry on diagonal)
wrt B	no edge between corresponding vertices (zero matrix entry)
Two columns orthogonal B	edge between corresponding wrtices (nonzero matrix entry)
Two columns not orthogo-	
nal wrt B	

$$
A=U^{t} B U, a_{i j}=\left(u_{i}, u_{j}\right)
$$

Feature/operation on U	Effect on graph correspond- ing to A
Duplicate isotropic columns	independent set, vertices have same neighbors
Duplicate non-isotropic	clique, vertices have same columns neighbors
Columns multiples of each	corresponding vertices have other
same neighbors (remember, only the zero-nonzero pattern is needed, and there are no zero divisors in $F)$	

- white vertex (no loop) \Longleftrightarrow isotropic \Longleftrightarrow independent set
- black vertex (loop) \Longleftrightarrow non-isotropic \Longleftrightarrow clique
- edge \Longleftrightarrow all possible edges
- cliques or independent sets can be empty

Algorithm

To find the graphs characterizing $\{G \mid \operatorname{mr}(F, G) \leq k\}$:

1. Columns of U are a maximal set of k-dimension vectors over F such that no vector is a multiple of any other.
2. Construct all interesting matrices A of rank $\leq k$.

$$
A=U^{t} B U \Longleftrightarrow \operatorname{rank}(A) \leq k
$$

(B is $k \times k$, rank k; U is $k \times n$.)
3. Return non-isomorphic marked graphs of matrices.

Marked graph for $\operatorname{mr}\left(F_{2}, G\right) \leq 3$

Complement of incidence graph of Fano projective plane!

Projective Geometry

$V(k, q)=k$-dimensional vector space over F_{q}.

Equivalence relation on $V-\{\overrightarrow{0}\}$ by

$$
x \sim y \Longleftrightarrow x=c y, \quad \text { nonzero } c \in F
$$

Equivalence class $[x]$ is a line in V.

The points of projective geometry of dimension $k-1$ and order $q, P G(k-1, q)$, are equivalence classes $[x]$.

Projective Geometry

$$
\begin{aligned}
& {[x]=\{c x \mid \text { nonzero } c \in F\}} \\
& q^{k}-1 \text { vectors in } V(k, q)-\{\overrightarrow{0}\}, \\
& q-1 \text { vectors in each equivalence class, } \\
& \text { so } \frac{q^{k}-1}{q-1} \text { points in } P G(k-1, q) .
\end{aligned}
$$

Incidence Graph vs. Marked Graphs

Incidence Graph of Projective Geometry

Vertices: $[x] \in P G(k-1, q)$

Edges: $[x]-[y] \Longleftrightarrow x^{t} y=0$

Marked Graphs with $B=I_{k}$:

Vertices: $[x] \in P G(k-1, q)$

Edges: $[x]-[y] \Longleftrightarrow x^{t} B y=x^{t} I_{k} y=x^{t} y \neq 0$

If $B=I_{k}$, marked graph is complement of incidence graph of $P G(k-1, q)$.

What about a different B ?

Congruence Doesn't Change Marked Graph

$$
A=U^{t} B U
$$

$C=$ change of basis matrix for $V(k, q)$.
$C^{t} B C$ and B have same marked graph
$U^{t} C^{t} B C U=(C U)^{t} B(C U)=$ basis transformation of U.
$f:[x] \mapsto[C x] . f$ is an isomorphism on equiv. classes.
f well defined: If $C x=y$, then $C(k x)=k C x=k y \in[y]$.
f is surjective since C is nonsingular.
f is injective: $\left[C x_{1}\right]=\left[C x_{2}\right] \quad \Longrightarrow \quad k C x_{1}=C x_{2} \quad \Longrightarrow$ $C\left(k x_{1}-x_{2}\right)=0 \Longrightarrow k x_{1}=x_{2}$ since C is nonsingular. This means $\left[x_{1}\right]=\left[x_{2}\right]$.
$C^{t} B C$ changes basis of columns of U, permuting columns of U, relabeling vertices of marked graph.

k-dim Bilinear Forms Over F_{q}, q odd

Up to congruence (change of basis), there are only two different k-dimensional bilinear forms B on F_{q} :

1. $B_{1}=I_{k}$
2. $B_{2}=I_{k-1} \oplus d, d$ a nonsquare in F_{q}.
k odd $\Longrightarrow C^{t} B_{1} C=d B_{2}$.

Graph of $B_{2}=$ Graph of $d B_{2}=$ Graph of B_{1}
k odd: one marked graph, the complement of incidence graph of projective geometry $P G(k-1, q)$.
k even: two marked graphs, one is complement of incidence graph of projective geometry $\operatorname{PG}(k-1, q)$.

Counting White Vertices in Marked Graphs

Using induction and representative bilinear forms, we get the following numbers of white vertices:

For odd $k=2 m+1: \frac{q^{2 m}-1}{q-1}$
For even $k=2 m: \frac{\left(q^{m}-1\right)\left(q^{m-1}+1\right)}{q-1}, \quad \frac{\left(q^{m}+1\right)\left(q^{m-1}-1\right)}{q-1}$

Marked Graphs for $\operatorname{mr}\left(F_{3}, G\right) \leq k$

k	Vertices	White	Black
1	1	0	1
2	4	2	2
2	4	0	4
3	13	4	9
4	40	16	24
4	40	10	30
5	121	40	81
6	364	130	234
6	364	112	252
7	1093	364	729
8	3280	1120	2160
8	3280	1066	2214

Questions/Todo

1. Calculate marked graphs for even q.
2. Say more about the structure of the marked graphs. References?
3. What forbidden subgraphs characterize a given marked graph?
