The Minimum Rank Problem for Finite Fields

Wayne Barrett (BYU) Jason Grout (BYU) Don March (U of Florida)

October 2005

Correspondence of G and matrices

Replace the *s with any nonzero elements of F.

mr(F,G) = minimum rank of corresponding matrices.

Example: Computing min rank in \mathbb{R}, F_2, F_3

 $F = \mathbb{R}, F_3$:

rank A = 2, so mr(\mathbb{R}, G) = 2 and mr(F_3, G) = 2.

But in F_2 , 2 = 0, so A doesn't correspond to G.

Example: Computing min rank in F_2

 $F = F_2:$ Any $A \in S(F_2, G)$ has form $\begin{bmatrix} d_1 & 1 & 1 & 1 & 0 \\ 1 & d_2 & 1 & 1 & 0 \\ 1 & 1 & d_3 & 1 & 1 \\ 1 & 1 & 1 & d_4 & 1 \\ 0 & 0 & 1 & 1 & d_5 \end{bmatrix}.$

$$A[145|235] = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & d_5 \end{bmatrix} \text{ has determinant 1 so rank } A \ge 3.$$

Therefore $mr(F_2, G) \geq 3$.

To find the graphs characterizing $\{G \mid mr(F,G) \leq k\}$:

1. Construct all matrices A of rank $\leq k$ over F. $A = U^t B U \iff \operatorname{rank}(A) \leq k.$

(B is $k \times k$, rank k; U is $k \times n$.)

2. Return non-isomorphic graphs of the matrices.

Problem: Too many matrices.

Solution: We only need the zero-nonzero patterns for the matrices. Be smarter by understanding $A = U^t B U$ better.

$$A = U^t B U$$
, $a_{ij} = (u_i, u_j)$

Feature/operation on U	Effect on graph correspond-	
	ing to A	
Column in U	vertex in graph	
Interchanging two columns	relabel vertices	
Column in U isotropic wrt B	no loop at vertex (zero entry	
	on diagonal)	
Column in U not isotropic	loop at vertex (nonzero entry	
wrt B	on diagonal)	
Two columns orthogonal	no edge between corresponding	
wrt B	vertices (zero matrix entry)	
Two columns not orthogo-	edge between corresponding	
nal wrt B	vertices (nonzero matrix entry)	

$$A = U^t B U, \ a_{ij} = (u_i, u_j)$$

Feature/operation on U	Effect on graph correspond-	
	ing to A	
Duplicate isotropic columns	independent set, vertices have	
	same neighbors	
Duplicate non-isotropic	clique, vertices have same	
columns	neighbors	
Columns multiples of each	corresponding vertices have	
other	same neighbors (remember,	
	only the zero-nonzero pattern	
	is needed, and there are no zero	
	divisors in F)	

- black vertex (loop) \iff non-isotropic \iff clique
- edge \iff all possible edges
- cliques or independent sets can be empty

To find the graphs characterizing $\{G \mid mr(F,G) \leq k\}$:

- 1. Columns of U are a maximal set of k-dimension vectors over F such that no vector is a multiple of any other.
- 2. Construct all *interesting* matrices A of rank $\leq k$.

$$A = U^t B U \iff \operatorname{rank}(A) \le k.$$

(B is $k \times k$, rank k; U is $k \times n$.)

3. Return non-isomorphic *marked* graphs of matrices.

Marked graph for $mr(F_2, G) \leq 3$

Complement of incidence graph of Fano projective plane!

Projective Geometry

V(k,q) = k-dimensional vector space over F_q .

Equivalence relation on $V - {\vec{0}}$ by

 $x \sim y \iff x = cy$, nonzero $c \in F$.

Equivalence class [x] is a line in V.

The points of projective geometry of dimension k-1 and order q, PG(k-1,q), are equivalence classes [x].

Projective Geometry

$$[x] = \{cx \mid \text{nonzero } c \in F\}$$

$$q^k - 1$$
 vectors in $V(k,q) - \{\vec{0}\}$,

q-1 vectors in each equivalence class,

so
$$\frac{q^k-1}{q-1}$$
 points in $PG(k-1,q)$.

Incidence Graph of Projective Geometry

```
Vertices: [x] \in PG(k-1,q)
```

Edges: $[x] \longrightarrow [y] \iff x^t y = 0$

Marked Graphs with $B = I_k$:

Vertices: $[x] \in PG(k-1,q)$

Edges:
$$[x] - [y] \iff x^t B y = x^t I_k y = x^t y \neq 0$$

If $B = I_k$, marked graph is complement of incidence graph of PG(k - 1, q).

What about a different B?

 $A = U^t B U$

C = change of basis matrix for V(k,q).

$C^{t}BC$ and B have same marked graph

 $U^{t}C^{t}BCU = (CU)^{t}B(CU) =$ basis transformation of U.

 $f: [x] \mapsto [Cx]$. f is an isomorphism on equiv. classes.

f well defined: If Cx = y, then $C(kx) = kCx = ky \in [y]$.

f is surjective since C is nonsingular.

f is injective: $[Cx_1] = [Cx_2] \implies kCx_1 = Cx_2 \implies C(kx_1 - x_2) = 0 \implies kx_1 = x_2$ since C is nonsingular. This means $[x_1] = [x_2]$.

 $C^{t}BC$ changes basis of columns of U, permuting columns of U, relabeling vertices of marked graph.

Up to congruence (change of basis), there are only two different k-dimensional bilinear forms B on F_q :

1.
$$B_1 = I_k$$

2. $B_2 = I_{k-1} \oplus d$, d a nonsquare in F_q .

$$k \text{ odd } \implies C^t B_1 C = dB_2.$$

Graph of B_2 = Graph of dB_2 = Graph of B_1

k odd: one marked graph, the complement of incidence graph of projective geometry PG(k-1,q).

k even: two marked graphs, one is complement of incidence graph of projective geometry PG(k-1,q).

Counting White Vertices in Marked Graphs

Using induction and representative bilinear forms, we get the following numbers of white vertices:

For odd
$$k = 2m + 1$$
: $\frac{q^{2m} - 1}{q - 1}$

For even
$$k = 2m$$
: $\frac{(q^m - 1)(q^{m-1} + 1)}{q - 1}$, $\frac{(q^m + 1)(q^{m-1} - 1)}{q - 1}$

Marked Graphs for $mr(F_3, G) \le k$

k	Vertices	White	Black
1	1	0	1
2	4	2	2
2	4	0	4
3	13	4	9
4	40	16	24
4	40	10	30
5	121	40	81
6	364	130	234
6	364	112	252
7	1093	364	729
8	3280	1120	2160
8	3280	1066	2214

Questions/Todo

- 1. Calculate marked graphs for even q.
- 2. Say more about the structure of the marked graphs. References?
- 3. What forbidden subgraphs characterize a given marked graph?