Eigenvalues first?

Jason Grout
Drake University jason.grout@drake.edu

Special thanks to Ben Woodruff at BYU-Idaho

Goals

- emphasize fundamental concepts throughout the entire course
- concrete computation \rightarrow intuition \rightarrow formal generalization

Outline

Course

Goals

Course Materials

Outline of Course

1. Computations and brief explanation
2. Application: motivation and practice
3. Theory and generalization

1. Computation and brief explanation

- matrix/vector operations
- RREF and solving systems
- determinants
- inverses
- linear dependence
- spans
- bases and coordinates
- rank
- eigenvalues/eigenvectors

2. Applications

Purpose: Motivation and practice

Concept	matrix mult.		solving App	evals systems	pretty evecs pictures
				X	
Vector Fields		X		X	
Markov Models	X			X	
Kirchoffs' Laws		X	X		
Interpolating Polynomials		X	X		
Least Squares	X	X	X		.

Additional Application Concepts

- Practice
- Cramer's rule: determinants, inverses
- Least Squares: dot product, angle, projections, transpose, coordinates, bases
- Finding standard bases: bases, coordinates, column space, row space, RREF
- New concepts
- Least Squares: column, row, and null spaces

3. Theory and Generalization

- Vector Spaces and Matrix Theorems
- Inner Products (nice bases)
- Linear Transformations
- Changing Bases

Outline

Course

Goals

Course Materials

Goals

- emphasize fundamental concepts throughout the entire course
- concrete computation \rightarrow intuition \rightarrow formal generalization

Emphasis: Eigenvalues and Eigenvectors

1. Computation: basic concepts and computation
2. Applications: 3 major applications (optimization, vector fields, Markov models)
3. Patterns and Vector Spaces: formal footing and relationships
4. Inner Products: inner products on \mathbb{R}^{n}
5. Linear Transformations: Geometry, connection to null space and determinants
6. Changing Bases: Diagonalization

Mindshare: entire course

Emphasis: Coordinate Vectors

1. Computation: basic concepts and computation
2. Applications: application and student project
3. Patterns and Vector Spaces: formal/generic context
4. Inner Products: orthogonal basis
5. Linear Transformations: Finding matrices for linear transformations
6. Changing Bases: Fundamental concept

Mindshare: entire course

Building Concept of Vector Spaces

Goal: concrete computation \rightarrow intuition \rightarrow formal generalization

1. Introduce vector subspaces as spans of vectors in \mathbb{R}^{n}
2. Introduce row, column, and null space as vector subspaces
3. Patterns and Vector Spaces

- Review subspaces as spans of vectors, cover subspace theorem
- Generalize "vector": polynomial, matrix vector spaces
- Generalize "vector addition" and "scalar multiplication": general vector spaces

4. Inner Products: Use function vector spaces

Outline

Course

Goals

Course Materials

Open Textbook

- Free: Download, print, copy, distribute
- Open Source: Change, augment, correct, improve
- Derivative works must give credit and have same Creative Commons open source license
- UTMOST CCLI Grant: American Institute of Mathematics

Textbook site
2PM Napoleon A1-A3, 3rd Floor, Sheraton

Open Textbook

@ ©®

- Free: Download, print, copy, distribute
- Open Source: Change, augment, correct, improve
- Derivative works must give credit and have same Creative Commons open source license
- UTMOST CCLI Grant: American Institute of Mathematics

Textbook site
2PM Napoleon A1-A3, 3rd Floor, Sheraton

Open Textbook

(c) (1) (0)
 BY SA

- Free: Download, print, copy, distribute
- Open Source: Change, augment, correct, improve
- Derivative works must give credit and have same Creative Commons open source license
- UTMOST CCLI Grant: American Institute of Mathematics

Textbook site
2PM Napoleon A1-A3, 3rd Floor, Sheraton

Open Textbook

- Free: Download, print, copy, distribute
- Open Source: Change, augment, correct, improve
- Derivative works must give credit and have same Creative Commons open source license
- UTMOST CCLI Grant: American Institute of Mathematics Textbook site 2PM Napoleon A1-A3, 3rd Floor, Sheraton

Homework

- Many homework problems and chapter projects written
- Not enough, though

Schaum's Beginning Linear Algebra

- \$12.63 on Amazon
- Brief explanations and examples
- 652 fully-solved homework problems

Open Math Problem Bank

groups.google.com/group/math-problembank

Sage: Free Open Source Math Software

sagemath.org

Mission Statement

Creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab.

- Introductory worksheets and classroom aids

Timeline

2009, 2010 Ben Woodruff, BYU-Idaho: Wrote initial textbook
Fall 2010 Jason Grout, Drake University: Revised, reordered, corrected, augmented text

We are Here

Winter 2011 Jason Grout, Continue revising

- Revise order of some topics
- Continue to add new content and exercises
- Sage worksheets
- Listen to YOUR suggestions

Timeline

2009, 2010 Ben Woodruff, BYU-Idaho: Wrote initial textbook
Fall 2010 Jason Grout, Drake University: Revised, reordered, corrected, augmented text

We are Here

Winter 2011 Jason Grout, Continue revising

- Revise order of some topics
- Continue to add new content and exercises
- Sage worksheets
- Listen to YOUR suggestions

Thank You!

Email: jason.grout@drake.edu

Book: artsci.drake.edu/grout/doku.php/books

1. Google "Jason Grout", click top hit
2. Click "Books" on left

Open Math Problem Bank:

groups.google.com/group/math-problembank
UTMOST CCLI Grant
American Institute of Mathematics Textbook site 2PM Napoleon A1-A3, 3rd Floor, Sheraton

