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An updated and expanded version of this chapter is available in the Sage documentation as
a thematic tutorial on linear algebra.

91.1 Introduction

Sage is generally recognized as the leading comprehensive open source mathematics software
system. Development began in 2005 by William Stein and progressed rapidly due to the
incorporation of many mature open source packages for various areas of mathematics. The
main web site for Sage ishttp://sagemath.org. Free downloads of Sage, free public servers,
and many other resources are located at the web site.

Sage is distributed with an open-source license (GPL version 3), which provides several
advantages over commercial offerings.

e There is no cost to obtain or upgrade Sage. Collaborators and students have a platform
that does not depend on institutional licenses and remains accessible in the future.

e All source code can be freely examined, modified, and redistributed. Algorithms can
be traced and examined, bugs can be located, and improvements and bugfixes can be
made and distributed freely. Often, bugs and improvements are made by experts in
the field and frequent updates make these available rapidly.

e Every copy includes the web server software to run Sage as a multi-user server, so
workgroups and educational institutions can provide computational services over the
Internet at no additional cost.

e Many routines in Sage leverage highly specialized packages included in Sage that are
written and vetted by experts. Many of these packages have been developed over
decades and are reliable and fast.
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Users may interact with Sage via a command-line interface or via a web interface known
as the Sage Notebook. The Sage Notebook is a web application that runs in a web browser
and serves as a front end for a Sage server, which may run on a remote computer or on the
local computer. The online notebook is the easiest way to begin working with Sage since
it works in any modern web browser (including on mobile devices) and requires no extra
installation. A free public Sage server is accessible from http://sagemath.org,.

Sage understands mathematical objects like rings, fields, vector spaces, matrices over
different fields, etc. Each vector and matrix knows the ring in which its entries live, such
as integers, rationals, elements of a finite field, floating-point double-precision reals (or
complexes), high-precision reals (or complexes), or more exotic objects such as multivariate
polynomials or algebraic numbers. Different routines or libraries will be transparently used
depending on the type of entries. Sage includes many linear algebra libraries which it uses
to do computations, including LAPACK, LinBox, IML, M4RI, etc. Support for floating-
point double-precision matrices is provided by the included SciPy and NumPy scientific
computation packages, which ultimately rely on LAPACK and other standard packages.

Extensive help and additional resources can be obtained freely through the Sage web
site at http://sagemath.org. Context-sensitive help can be easily obtained by evaluating
a function or method name followed by a question mark. Functions and methods can be
discovered using tab-completion (see below).

In this chapter, example lines that start with sage: are input lines, and everything on
an input line following the sage: prompt should be typed into Sage. Evaluate input by
pressing the Enter key (in the command line) or by clicking evaluate or pressing Shift-Enter
(in the notebook). In the examples below, the Sage output immediately follows the input
on separate lines without sage: prompts. An ellipsis ... indicates output that has been
deleted for brevity.

91.2 Working with Sage

Facts:

1. You can use Sage in a web browser by accessing the Sage Notebook, which can be
served from your own computer or a remote computer (such as a public server ac-
cessible from http://sagemath.org). You can also run Sage in command-line mode
on your own computer (exit or quit will stop Sage). If you are running Sage in
command-line mode, you can start the online notebook server for only your own com-
puter by typing notebook () at the sage: prompt; stop the notebook with Control-C.
You can also download an Apple OS X Sage application that lets you start a local
Sage notebook or command-line environment by double-clicking.

2. Users use the general-purpose, popular, and easy-to-learn Python programming lan-
guage to interact with Sage. Python is used in many scientific and other disciplines,
so learning Python has many applications beyond Sage. Sage also includes many li-
braries that are compiled C, C++, Fortran, or other languages, but the “glue” tying
everything together, as well as a substantial mathematical library, is also implemented
in Python.

3. Mathematical objects in Sage belong to “parents,” an idea pioneered by the Magma
computer algebra system. Allowable operations, available methods, implemented al-
gorithms, and documentation are all sensitive to an object’s parent.

4. What Sage prints (the text representation), and what Sage knows, are two different
things, and often what is printed is not the full story. The parent () method is helpful
in understanding an object.
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5. Much of Sage is object-oriented, and vectors, matrices, and vector spaces are consid-

ered objects. If an object is assigned a name, then typing the name, then a period,

and then a method name followed by parentheses will have Sage call the method to
return a result. For example, if A is a matrix, then A.det () will calculate the deter-
minant of A using the det () method. Typing the name, appending a period, and then
pressing the Tab key will bring up a full list of the methods available for that object
(e.g., if A is a matrix, try A.<tab>, or A.a<tab> to see all methods beginning with
an “a”). Many computations are also available as top-level commands (you can use
either det (A) or A.det () to calculate the determinant). Appending a question mark
to a command or method name, such as A.det?, and evaluating gives the documenta-
tion for the function or method (and the method documentation is context sensitive,
depending on the object). Appending two question marks will display the source code
for the command, method, or object.

Documentation of commands and methods contains short informative examples that
are tested for accuracy. The possible methods and documentation for vectors and
matrices may greatly depend on the types of entries it contains. A quick way to learn
about the capabilities of Sage is to build the revelant object (for example, a matrix)
and explore methods and their documentation using tab completion and question
marks.

6. Sage implements a variety of rings and fields that can be used as entries of vectors or
matrices. Some common fields are listed below. The RDF, CDF, RR, and CC fields have
53-bit precision (see Section. RealField, ComplexField, RealIntervalField,
and ComplexIntervalField support arbitrary precision. All other fields listed are
exact with no round-off error.

Field Name Notes

Symbolic SR Used with symbolic variables
Rationals QQ

Mod p Integers(p) or GF(p) p prime, p = 2 highly optimized
Finite Field GF(p~n, ’a’) p prime

Q[sqrt(d)] QuadraticField(d, ’a’) Generator a

Cyclotomic Fields CyclotomicField(n) Rationals with nth roots of unity
Number Fields NumberField(poly, ’a’) Irreducible poly, generator a
Algebraic Numbers  QQbar Algebraic closure of QQ
Algebraic Reals AA Real numbers in QQbar

Machine Reals RDF Best for numerical linear algebra
Machine Complexes CDF Best for numerical linear algebra
Reals RealField(prec) prec = precison in bits
Complexes ComplexField(prec) prec = precison in bits

Reals RR Same as RealField(53)
Complexes cc Same as ComplexField(53)

Real Interval ReallntervalField(prec) prec = precision in bits
Complex Interval ComplexIntervalField(prec) prec = precision in bits

7. Create symbolic variables with var (). Note that x is predefined at startup to be a
symbolic variable (you will need to create any other symbolic variables).

8. Indices of vectors, matrix rows, matrix columns, lists, and tuples all begin at 0. For
example, the third row of a matrix is accessed with the index 2. While perhaps un-
comfortable at first, this makes programming easier, and makes vectors and matrices
consistent with similar Python constructs.

9. Large matrices (at least 20 rows or 50 columns) do not print all their entries by default.

To print the entries, do print A.str(). You can adjust the cutoff for this behavior us-
ing sage .matrix.matrix0.set max rows and sage.matrix.matrix0.set _max_cols.
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We can save vectors and matrices (and most objects in Sage) to a file with the save ()
method. Given a filename, the load () function returns the saved object. This lets us
save the results of a computation and then resume it later or on another computer.
Vectors and matrices may be immutable, which means that they cannot be changed.
For example, the reduced row-echelon form of a matrix is typically cached (and hence
made immutable) so that another computation for the same matrix will not need
to repeat the reduction to echelon form. We can make a matrix A immutable using
A.set_immutable (). We can use the copy () function to make a mutable copy.
Place comments in your code by prefixing each comment with #. Comments extend
from # to the end of the line.

Place several commands on a single line by separating them with a semi-colon: a =
4; a + 7. Several quantities can be output in one tuple by creating a single command
with values separated by commas: 2+3, 8-7.

In the notebook, only the value of the last expression is printed. An assignment of a
value to a variable will not produce any output. A common idiom for assigning v to
the result of a command and then displaying v is v = some_command(); v.

Lists in Sage are delimited by brackets [,]. Entries may be added, removed, and
sorted. Duplicates are allowed. Sage also has a set data type, for which duplicates
are removed, and determining membership is very fast. Tuples are very similar to
lists, but are immutable, and are delimited by parentheses (,). Be careful not to
confuse tuples with vectors, since vectors also print using parentheses. Lists, tuples,
and sets are part of the Python language. The official Python tutorial in the Python
documentation has an excellent discussion of lists, tuples, and sets.

Python has a very convenient way to build lists using list comprehensions, which is
similar to set-builder notation.

lambda is a reserved word in Python, so it cannot be used as a variable name! lambda
is used to create short unnamed functions (i.e., “anonymous” functions).

By default, I and i are both predefined as the complex number i = /—1.
Occasionally, you may want to overwrite a variable that Sage predefines with your
own value, like using i as an index or setting I to be an identity matrix. To access
Sage’s predefined variable, prepend sage.all. to the variable (e.g., sage.all.I is
the square root of —1, even if you have redefined I). Use the reset() function to
reset variables to Sage defaults (e.g., reset (?I°) resets I to v/—1, and reset () will
reset all variables to Sage’s default values).

Examples:

1.

The parent of an object helps distinguish between objects that may print the same.

sage: 5, parent(5) # this "5" is an integer

(5, Integer Ring)

sage: 5/1, parent(5/1) # this "5" is a rational
(5, Rational Field)

. Mutable and immutable matrices:

sage: A = matrix(QQ, 3, 4, range(12)); A.is_mutable() # can change A
True

sage: B = A.rref(); B.is_immutable() # can’t change B

True

sage: C = copy(B); C.is_mutable() # can change C

True

sage: C[0,0] = 100 # change the upper-left element of C
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3. List comprehensions provide an easy way to map functions or filter.

sage: v = vector([-2, 3, 4, -6, 5])
sage: [1i"2 for i in v], [i"2 for i in v if i > 0]
([4, 9, 16, 36, 251, [9, 16, 25])

91.3 Vectors

Commands:

1. Constructors: Sage has a number of ways to construct vectors.
(a) Construct vectors over a specific ring with vector (ring, entries).

(b) The ring is optional; if not provided, Sage will infer the ring from the entries.
The base_ring() method gives the ring of the entries. We can construct a new
vector over a different base ring by using the change _ring() method.

(c¢) Create vector-valued symbolic functions with £ (inputs) = [outputs] syntax.

(d) The zero_vector() and random vector() commands construct zero and ran-
dom vectors. The options to random vector() depend on the ring; see the
random_element () method documentation for the ring for details (for exam-
ple, QQ.random_element?).

2. Properties

(a) In Sage, vectors do not have a column or row orientation. Instead, Sage interprets
the vector as either a row or column as the situation demands. In order to
explicitly get a row or column vector (i.e., a single-row or single-column matrix),
use the row() or column() methods.

(b) Use square brackets to access an element of the vector. Remember that the
indices start at zero.

(¢) To get the number of elements in a vector, use the [len() command.

(d) The norm() method gives the vector 2-norm. We can specify a p to compute a
p-norm for any p > 1 (including Infinity).

(e) The n() method gives a numerical approximation. We can specify a precision or
number of digits.

3. Manipulations
(a) Linear combinations use standard notation, like 2%u + 3*v.

(b) The default product u*v of two vectors is the dot product. We can also use the
dot_product () method. The hermitian_inner_product () method conjugates
the first vector before taking the dot product. There are also outer_product ()
and cross_product () methods (cross product works for 3- and 7-dimensional
vectors).

(¢) The applymap() method will apply a function to each element of the vector.
Equivalently, you could also explicitly construct a new vector using a list com-
prehension.
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Examples:

1. Construct vectors:

sage: v = vector(QQ, [1,2,31); v

(1, 2, 3)

sage: v.change_ring(RDF)

(1.0, 2.0, 3.0)

sage: v.applymap(lambda x: x"2) # also f(x) = x"2; v.apply.map(f)
(1, 4, 9)

sage: random vector(QQ, 10, num bound=15, den_bound=5) # random
(-2, -5/2, 15/4, 1, -11/4, 1, -13/4, 10, -3, 1)

sage: x,y = var(’x,y’); vector(SR, [x, y, x*sin(y)])
(x, y, x*sin(y))

sage: f(x,y) = [x, y, x*sin(y)]; £ # vector-valued function
(x, y) |--> (x, y, x*sin(y))
sage: £(1,2)

(1, 2, sin(2))

2. Properties of a vector. w.n(20) gives w with 20 bits of precision; use w.n(digits=20) for
20 digits.

sage: v = vector(QQ, [21,-3,-1,2]1); v[0], len(v)

(21, 4

sage: v.norm(), v.norm(1), v.norm(2), v.norm(5), v.norm(Infinity), v.norm(x)
(sqrt(455), 27, sqrt(455), 4084377°(1/5), 21, (2°x + 37x + 21°x + 1)~ (1/x))
sage: w = vector(SR, [pi, e, 3/71); w.n(), w.n(digits=2)

((3.14159265358979, 2.71828182845905, 0.428571428571429), (3.1, 2.7, 0.43))

3. Vector arithmetic:

sage: u = vector(QQ, [1, 2, 3]1); v = vector(QQ, [4, 3, -11)

sage: 2%u + 3%v, u.cross_product(v)

((14, 13, 3), (-11, 13, -5))

sage: u*v, u.dot_product(v), vector(SR, [4,2+I,3]).hermitian_inner_product(u)
(7, 7, -2%I + 17)

sage: u.outer_product(v) # same as: u.column() * v.row()

[ 4 3 -1]
[ 8 6 -2]
[12 9 -3]

91.4 Matrices

Commands:

1. Constructors

(a) The matrix(ring, entries) command constructs a matrix over a specific ring
of a specific size. The entries can be given as a list of rows or row vectors. If
the dimensions of the matrix are supplied before the entries parameter, then
the entries parameter can just be a list of entries or a function mapping indices
(zero-based) to entry values. A base ring will be inferred if not specified.
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The column matrix () command takes a list of columns instead of a list of rows.

A variety of functions construct special types of matrices.

Description Example

Diagonal matrix diagonal matrix(QQ, [1,2,3])

Identity matrix identity matrix(3)

Zero matrix zero_matrix(3,4)

All-ones matrix ones_matrix(3,4)

Elementary matrix elementary matrix(QQ, 4, rowl=3, scale=-2)
Random matrix random_matrix (RDF, 3,4)

Hadamard matrix hadamard matrix(4)

Polynomial companion matrix companion matrix((x~2-2*x+1).polynomial(QQ))

The zeromatrix(), ones matrix(), and random matrix() functions also can
take a single number to construct a square matrix. For more options to give to
the random matrix() function, see the random_element () method for the ring
of entries (e.g., RDF.random_element?). The random matrix () constructor also
takes an algorithm keyword that can be used to create small example matrices
with integer entries that are “nice” to work with. Values of this keyword can be
echelonizable, unimodular, subspaces, or diagonalizable and will create
matrices (respectively) with a “nice” echelon form; with determinant one; with
simultaneously “nice” bases for the row space, column space, right kernel, and
left kernel; or similar to a diagonal matrix.

The included SciPy linear algebra package has a number of matrices as well,
including the above and Hankel, Leslie, Pascal, Toeplitz matrices, and more.

You can construct the space of all matrices M with a given base ring and size
and use this space to construct matrices. There are also other methods of matrix
spaces; see the Sage reference manual.

2. Block Matrix Constructors

(a)

The blockmatrix() and block-diagonal matrix() commands create block
matrices (see Example [2 next). Blocks may be rectangular, integer arguments
are converted to blocks with diagonal entries equal to the integer, and the result
carries the natural subdivisions by default. See the block matrix() documen-
tation for many more features.

The matrix methods block_sum() (for block diagonal results), augment () (con-
catenate horizontally), and stack() (concatenate vertically) provide alternative
ways to combine two matrices or a matrix and a vector.

Sage matrices can be subdivided into blocks (i.e., partitioned into submatrices).
Blocks are created with the subdivide () method (specify row and column in-
dices before each subdivision point), while the subdivisions() method returns
this subdivision. The subdivision() method retrieves a specified block, and the
subdivision_entry () returns a specified entry of a specified block. If arithmetic
is done between matrices with compatible subdivisions, the result also has the
natural subdivision. See Example [2| next.

3. Properties

(a)

The I, C, T, and H attributes give the inverse, conjugate, transpose, and con-
jugate transpose (Hermitian transpose) of the matrix. Do not use parentheses
when using these (e.g., A.I). The I, C, T, and H attributes are shortcuts for the
inverse(), conjugate (), transpose (), and conjugate_transpose () methods,
respectively. The inverse of a matrix is also A"-1 and ~A.
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Matrices have a number of methods for standard computations (e.g., A.det (D).

Method Description

density() Density of nonzero entries

det ) Determinant

minors (k) List of all k£ by k minors, in lexicographic order
ncols() Number of columns

norm(p) Norm, p can be 1, 2, Infinity, or *frob’ (Frobenius)
nrows () Number of rows

permanent () Permanent

permanental minor (k) Sum of permanents of all possible k by k submatrices
rank() Rank
trace() Trace

There are also several other commands to return various matrices.

Description Example

Adjoint A.adjoint ()

Antitranspose A.antitranspose()

Commutator (AB — BA) A.commutator (B)

Matrix exponential, Y 7> Ak—f A.exp() (Use RDF or CDF matrices)
Elements satisfying given condition A.find(lambda x: x<O0)

Numerical approximation A.n(Q), A.n(digits=4), A.n(10) (10 bits)

The £ind () method makes a matrix with ones where the original matrix entries
satisfied the given condition and zeros elsewhere. The indices=True option
returns instead a dictionary of indices and elements satisfying the condition.

The A.iterates(v, n, rows=...) method takes a vector v and a number n,
and returns the vectors v, Av, A%v,... A" lv as rows (if rows=True, which is
default) or columns (if rows=False) of a matrix.

The charpoly () and minpoly () methods return the characteristic and minimal
polynomial, respectively. Each function optionally takes a variable name.

The following methods give the indices of various nonzero elements of a matrix,
row, or column (remember that indices start at zero):

nonzero_positions(), nonzero_positions_in row(), and
nonzero_positions_in_column().

A.column_space(), A.row_space(),A.right kernel, and A.left _kernel () con-
struct the corresponding vector spaces. Warning: Default versions of these com-
mands are generally the left versions, so A.kernel() is the left kernel and
A.image() is the row space, consistent with the x — xA transformation, where
the vector is on the left in the product.

Matrices have numerous predicates that start with is_, for example,
A.is_invertible(). The is_similar () method can optionally return a trans-
formation matrix.
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Method

True if

is_bistochastic()
is_dense()
is_diagonalizable()
is_hermitian()
is_idempotent ()
is_immutable()
is_invertible()
is_mutable ()

is_one ()
is_scalar()
is_similar()
is_singular()
is_skew_symmetric()
is_sparse()
is_square()
is_symmetric()
is_unitary()
is_zero()

Each row and column sums to 1

Matrix is stored in a dense data structure
Matrix is similar to a diagonal matrix
Matrix is equal to its conjugate transpose
Matrix is equal to its square

Matrix entries cannot be changed

Matrix is invertible over its base ring
Matrix entries can be changed

Matrix is identity matrix

Matrix is a multiple of the identity matrix
Matrix is similar to another given matrix
Matrix is not invertible

Matrix is equal to its negative transpose
Matrix is stored in a sparse data structure
Matrix has the same number of rows and columns
Matrix is equal to its transpose

Columns form an orthonormal basis
Every entry is zero

4. General manipulations

(a) Arithmetic with matrices uses standard notation, like 2xA - A*B + A~3 - A~-1.

(b) Recall that Sage vectors do not have an implicit row or column orientation. If

(d)

A is a matrix and v is a vector, then A*v views v as a column vector and v*A
views v as a row vector. In order to get a specific orientation for v, convert it to
a single-row or single-column matrix using v.row() or v.column().

A.elementwise_product (B) computes the Hadamard product of A and B, while
A.tensor_product (B) computes the tensor product. Subdivisions are automat-
ically added for tensor products; do A.tensor_product (B, subdivide=False)
to not have the result subdivided. A.trace_of_product(B) method computes
the trace of AB without actually computing AB.

A.apply map(function) will return a new matrix resulting from applying the
function to each element of A, like f(x) = x"2; A.apply map(f) or simply
A.apply map(lambda x: x72).

5. RREF: There are several ways to compute reduced row-echelon form (e.g., A.rref ).

Method Description

rref () Calculate RREF (over fraction field)
echelon_form() Calculate RREF (over base ring)

echelonize() Modify the matrix to echelon form (over base ring)

extended_echelon_form()

Augment with identity matrix before reducing

(a)

There are a number of commands to perform elementary operations on a matrix.
Each command also has a variant that returns a new matrix instead of modifying
the matrix—these variants have the same name, but in past tense and prefixed
by with_. For example, A.rescale_row(0,2) rescales row 0 of A by a factor
of 2, while A.with rescaled row(0,2) does not modify A, but returns a new
matrix that is equal to A, except row 0 is scaled by 2. Remember again that row
and column indexing starts at zero.
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Row operation = Example

Cy+ Cy—4C; A.add multiple_of _column(2,1,-4)
Ry <~ Ry —4R; A.add multiple_of row(2,1,-4)

Co + 3Cy A.rescale_col(0, 3)

Ry <+ 3Ry A.rescale_row(0, 3)

Co < 3Co A.set_col_tomultiple_of_co0l(0,2,3)
Ry + 3R> A.set_row_tomultiple_of _co0l(0,2,3)
Co < Cy A.swap_columns(0,2)

Ry < Ry A.swap_rows(0,2)

(b) The pivots() method returns the indices of the pivot columns and nonpivots()
returns the indices of the nonpivot columns. The pivot_rows () method returns
the indices of a topmost subset of the rows that span the row space and are
linearly independent.

. Solving systems: Sage has specialized methods for solving systems of linear equa-

tions over a variety of rings, which can be significantly more efficient and stable than
inverting a matrix. To solve a system of linear equations of the form Ax = b or
AX = B (X and B matrices), use the matrix solve_right () method or the syn-
onymous backslash syntax A \ b. The solve_left () method solves equations of the
form xA=b or XA = B.

. Left vs. Right: Sage can do many calculations dealing with right (Ax) or left (xA)

matrix-vector products. The right or left tells which side the vector is on. Typically,
“right” computations return vectors of interest as columns, while “left” computations
return vectors of interest as rows. Warning: Sage typically defaults to left versions of
commands (e.g., A.kernel() is A.left kernel()). Use the right or left versions of
commands below to be explicit.

Right: Ax =b Left: xA=Db
right_eigenmatrix() left_eigenmatrix()
right_eigenspaces() left_eigenspaces()
right_eigenvectors() left_eigenvectors()
right kernel() left_kernel()

right nullity() left nullity()
solve_right () solve_left ()

. Indexing: Sage supports very flexible ways of getting and setting elements of ma-

trices. A[i,j] returns the entry in row ¢ and column j (indices start at zero). The
following table gives some general patterns for the index syntax, which is similar to
NumPy or MATLAB syntax. If an index is negative, it counts backward from the
last index (e.g., A[-1,:] is the last row), and if a step size is negative, it indicates a
count down (e.g., A[::-1,:] gives a new matrix with the rows reversed). See the Sage
reference manual on matrix indexing, http://www.sagemath.org/doc/reference/
sage/matrix/docs.html#indexing,.
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Index Description
i Index ¢

All indices
i: Indices from i to the end
1 Indices up to, but not including, j
i:j Indices from ¢ up to, but not including, j
i:j:s Every sth index from 4 up to, but not including, j
negative Count backwards from the last index
list Explicit list of indices, possibly with repeats and reorderings

In the methods below, row and column index lists can contain repeated or reordered
indices. The row and column methods at the end of the table below return vectors or
lists of vectors, while the equivalent index notation returns submatrices. The second
table below indicates how to modify submatrices using methods or indexing notation.

Method Equivalent indexing
A.diagonal() None
A.matrix_from_columns([2,3]) Al:,[2,3]1]
A.matrix_from_rows([2,3]) Al[2,3],:]
A.matrix_from_rows_and_columns([2,3],[3,4]) A[[2,3],[3,4]1]
A.submatrix(i,j,nrows,ncols) Ali:i+nrows, j:j+ncols]
A.column(i) Al:,i]

A.columns([2,3]) Al:[2,3]1]

A.row(i) Ali,:]

A.rows([2,3]) Al[2,3],:]

Method Equivalent indexing

A.set block(i,j,B) Ali:i+B.nrows(), j:j+B.ncols()]=B (B a matrix)

A.set_column(i, [2,1,3]) A[:,il=vector([2,1,3]) or A[:,i]l=[[2],[1],[3]]
A.set_row(i, [2,1,3]) Ali,:]=vector([2,1,3]) or A[i,:1=[[2,1,3]]

Sparse Matrices: In order to handle large sparse matrices, Sage can store any matrix
in a compressed way so that only the nonzero entries are stored. Create a sparse matrix
by specifying sparse=True when the matrix is created. Matrices initialized from a
Python dictionary default to sparse. The included SciPy Python package also has
many resources for dealing with sparse matrices.

Decompositions: A variety of matrix decompositions are available in Sage, and
many are available with algorithms for both exact and numerical matrices. Typically
the return value is a tuple of matrices that can be used to reconstruct the matrix
(except Jordan form, which requires explicitly asking for the transformation matrix).
Some exact algorithms require the base ring of the matrix to have certain properties,
such as containing square roots. In other cases, the matrix must have certain prop-
erties, such as having a characteristic polynomial that factors. These conditions are
listed in the “Base ring must contain” column.

Sage implements the algebraically closed field of algebraic numbers, QQbar, so some
decompositions applied to matrices of rational numbers will automatically return
matrices with entries from Q@bar as necessary (e.g., Cholesky). On the other hand,
jordan_form will simply fail if there are eigenvalues outside the base ring.

Matrices over RDF and CDF use specialized numerical algorithms for the LU, QR,
SVD, Schur, and Cholesky factorizations; see Section [01.11]
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Name Method Base ring must contain
LU, Triangular LUQO Fraction
QR, Gram-Schmidt QRO Fraction, square roots
SVD, Singular Value SVD()
Schur schur )
Cholesky, Square Root cholesky () Square roots
Jordan Form jordan_form() Eigenvalues
Rational Canonical Form rational form() Field
(Invariant Factors)
Smith Form smith form() Principal ideal domain
Symplectic Form symplectic_form() Field
Subspace Decomposition  decomposition() Factored characteristic
polynomial

Examples:

1.

Constructing matrices.

sage: matrix(QQ, [[1,0,1],[2,0,-1]]1) # also matrix(QQ, 2, 3, [1,0,1,2,0,-1])

[1 0 1]

[2 0 -1]

sage: u = vector(QQ, [2,3]); v = vector(QQ, [5,0]); w = vector(QQ,
sage: columnmatrix([u,v,w])

[2 5 -1]

[3 0 2]

[-1,2D)

sage: def vandermonde(R, v): return matrix(R, len(v), lambda i,j: v[i]~j)

sage: vandermonde(QQ, [2,3,4])

[1 2 4]

[1 3 9]

[ 1 4 16]

sage: def hilbert(R,n): return matrix(R, n, lambda i,j: 1/(i+j+1))
sage: hilbert(QQ, 3)

[ 11/2 1/3]

[1/2 1/3 1/4]

[1/3 1/4 1/5]

Constructing block matrices.

sage: A = matrix(QQ, [[-1,1],[0,-111); B = matrix(QQ, [[1,-1/2]11)
sage: blockmatrix(QQ, [[A,11,[0,BI1])
[ -1 1] 1 0]

[ o© ol 1 -1/2]

sage: block diagonal matrix([A,B], subdivide=False)

[ -t 1 0 0]

[ o -1 0 0]

[ o 0 1 -1/2]

sage: A.augment(vector(QQ, [1,-1/2]), subdivide=True)
[ -1 1] 1]

[ o -11-1/2]
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sage: A.stack(B)

[ -1 1]
[ o ~-1]
[ 1-1/2]

We can subdivide an existing matrix to get a block matrix. Here, we subdivide just before
row 2 and just before columns 1 and 3 (remember indices start at 0).

sage: C = matrix(QQ, 3, 5, range(15))

sage: C.subdivide([2],[1,3]1); C

[ol 1 2] 3 4]

[ 516 718 9]

[-—+-———- +-———= ]

[10]111 12|13 14]

sage: C.subdivision(0,2) # block (0,2)

[3 4]

[8 9]

sage: C.subdivision_entry(0,2,0,1) # entry (0,1) in block (0,2)
4

sage: C * C.transpose() # arithmetic preserves block structure if possible
[ 30 80/130]

[ 80 255/430]

[~ +---1

[130 430|730]

. Properties of a matrix.

sage: A = matrix(QQ, 2, [0,-1,2,-2]); A, A.I, A.T, A.find(lambda x: x<0)
(

[0o-11 [-11/21 [0 21 [0 1]

[2-2], [ -1 oI, [-1 -2], [0 1]

)

sage: A.find(lambda x: x<0, indices=True)

{¢0, 1): -1, (1, 1: -2}

sage: A.change ring(RDF).exp() # use RDF for numeric calculations
L 0.508325986 -0.309559875653]

[ 0.619119751306 -0.110793765307]

sage: A.norm(), A.norm(1), A.norm(Infinity), A.norm(’frob’)
(2.92080962648, 3.0, 4.0, 3.0)

sage: A = diagonal matrix([2,2,5])

sage: A.charpoly(), A.minpoly()

(x"3 - 9%x~2 + 24*xx - 20, x"2 - 7*x + 10)

sage: A.minors(2)

(4, o, o, 0o, 10, 0, 0, 0, 10]

sage: A.det(), A.rank(), A.trace(), A.permanent(), A.permanental minor(2)
(20, 3, 9, 20, 24)

. Like many computer algebra systems, row-reducing a symbolic matrix using the rref ()

method assumes that we are working over a field (i.e., that if ¢ is any nonzero element of
the base ring, then 1/c is also in the base ring). Since Sage can also work with matrices over
general rings (which may not be fields), we can ask Sage to do operations without assuming
that we can divide. For example, if a matrix has entries in a polynomial ring, we can ask for
the echelon form() of the matrix, which only uses operations in the polynomial ring (e.g.,
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Sage will not divide except by constants). We can use the matrix_over_field() method to
get a copy of a matrix over the fraction field of its base ring.

sage: R.<cl1,c2,c3> = QQ[] # construct a polynomial ring with 3 variables

sage: A = matrix([[1,1,2,c1], [1,0,1,c2], [2,1,3,c3]11); A
[1 1 2c1]
[1 0 1 c2]
[2 1 3c3]

sage: A.rref() # works over fraction field of R, so 1/cl exists, etc.
[1010]

[0110]

[0 00 1]

sage: A.echelon form() # uses only operations in the polynomial ring R
L 1 0 1 c2]

L 0 1 1 cl - c2]

[ 0 0 0 -c1 - c2 + c3]

sage: B = A.matrix_over_field(); B.base_ring()

Fraction Field of Multivariate Polynomial Ring in cl, c2, c3 over Rational Field
sage: B.echelon form() == A.rref()

True

We can easily get pivot columns.

sage: A = matrix(QQ, [[1,2,3,4],[2,4,6,8]1,[3,5,4,3]11); A.rref()
[ 1 0 -7 -14]

[ o 1 5 9]

[ o o o o]

sage: A.pivots(), A.nonpivots(), A.pivot_rows()

(o, 1), (2, 3), (0, 2))

sage: A[:,A.pivots()] # get the pivot columns

[1 2]

[2 4]

[3 5]

sage: A[A.pivot_rows(),:] # get the pivot rows
[1234]

(354 3]

The extended_echelon_form() method first augments an m by n matrix with an m by m
identity matrix before computing the rref. The result can also be subdivided by specifying
subdivide=True. The four relations in the last two lines of this example are true in general.

sage: A = matrix(QQ, 3, 3, [2,3,4,-1,2,4,1,5,8])

sage: B = A.extended_echelon form(subdivide=True); B

[ 1 0 -4/7| 0 -5/7 2/7]

[ O 112/71 0 1/7 1/7]

[-———--- o= Sl

L o o ol 1 1 -1]

sage: C = B.subdivision(0, 0); C # C is upper-left submatrix
[ 1 0 -4/7]

[ o 1 12/7]

sage: L = B.subdivision(1l, 1); L # L is lower-right submatrix
[1 1-1]

sage: A.right kernel() == C.right kernel(), A.row_space() == C.row_space()

(True, True)
sage: A.column_space() == L.right kernel(), A.left_kernel() == L.row_space()
(True, True)
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We solve systems of equations using solve_right or backslash notation.

sage: A = matrix(QQ, 2, [1,2,3,4]); b = vector(QQ, [5,61)
sage: x = A.solveright(b); x # also x = A\ Db

(-4, 9/2)
sage: A * x == Db
True

sage: B = matrix(QQ, 2, 3, [5,1,0,6,0,1])
A\NB; A*xX==B # also X = A.solve_right(B)

sage: X
True

To be able to compute an exact QR decomposition, we need a field that contains square roots,
so we create a matrix with entries from QQbar. Sage uses specialized numerical algorithms
if the matrix is over RDF.

sage: A = matrix(QQbar, 3, 3, [0..8]) # [0..8] is [0, 1, 2, ..., 8]

sage: Q, R = A.QR(); A == Q*R and Q.is_unitary() # True if both conditions are True
True

sage: B = matrix(RDF, 3, 3, [0..8])

sage: Q, R = B.QR(); (A - Q*R).norm() < 107-10 and Q.is_unitary()

True

91.5 Eigenvalues and Eigenvectors

Sage will compute exact eigenvalues, eigenvectors, and eigenspaces for matrices with entries
from exact rings, and will compute approximate eigenvalues and eigenvectors for matrices
with floating-point entries. Both right and left variants of the eigenvector methods are
available; we will only discuss the right variants.

Commands:

. The eigenvalues() method computes the eigenvalues. If a matrix over QQ does not

have rational eigenvalues, then the eigenvalues may be returned as algebraic numbers
in QQbar (the algebraic completion of QQ) and printed as numeric approximations
followed by question marks. The question mark indicates that the number is contained
in the interval found by taking the last digit of the printed representation plus or minus
one (e.g., 3.257 represents an exact root in the interval [3.24,3.26]). We emphasize
that a QQbar element is an exact root of a polynomial and the printed approximation
indicates an interval containing the value, and so may be slower to work with than
computing the eigenvalues numerically using an RDF or CDF matrix.

. The eigenvectors_right () method returns a list, each element of the following form:

(eigenvalue, list of eigenvectors, algebraic multiplicity).
The eigenspaces_right () method returns a list, each element of the following form:
(eigenvalue, eigenspace), where the eigenspace is a Sage vector space.

. The eigenmatrix right() method of a matrix A returns two matrices D and P

such that AP = PD. The eigenvalues are the diagonal of D and the corresponding
eigenvectors are the columns of P. Columuns of zeros in P indicate that the geometric
multiplicity of the eigenvalue is not equal to the algebraic multiplicity.
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Examples:

1. We calculate various eigenvalues, eigenvectors, and eigenspaces. Numerical matrices always
claim eigenvalues have multiplicity one since numerical error can easily fool multiplicity

calculations (see Section [91.11]).

sage: entries = [-8,21,74,-48,24,-7,-78,72,-12,6,44,-36,-4,-3,2,-4]
sage: A = matrix(QQ, 4, 4, entries); A.eigenvalues()

[5, 4, 8, 8]

sage: A.eigenvectors_right()

(5, [ (1, -5/7, 2/7, -1/7) 1, 1),

4, [ (1, -3/2, 3/4, 1/4) 1, 1),

@, [, o0,0,-1/3), (0, 1, -1/2, -1/3) 1, 2)]

sage: A.eigenspaces_right()

[

(56, Vector space of degree 4 and dimension 1 over Rational Field ...),
(4, Vector space of degree 4 and dimension 1 over Rational Field ...),
(8, Vector space of degree 4 and dimension 2 over Rational Field ...)
]

2. The eigenmatrix_right() method provides a very easy way to get corresponding lists of
eigenvalues and eigenvectors using the diagonal() and columns() methods of matrices.

sage: entries = [-8,21,74,-48,24,-7,-78,72,-12,6,44,-36,-4,-3,2,-4]
sage: A = matrix(QQ, 4, 4, entries)

sage: D, P = A.eigenmatrix right(); D, P, A x P == P * D

(

[ooo0] [ 1 1 1 0]

04001 [-5/7 -3/2 0 1]

[oosol [2/7 3/4 0 -1/2]

(ooo8l, [-1/7 1/4 -1/3 -1/3], True

)

sage: evals = D.diagonal(); evecs = P.columns()

sage: Axevecs[0] == evals[0] * evecs[0] # check first eigenvalue/eigenvector
True

3. For matrices with rational entries, we can optionally ask that eigenspaces be reported just
once per irreducible factor of the characteristic polynomial since the eigenspaces for each
irreducible factor are related in a natural way.

sage: A = matrix(QQ, 3, 3, [-7, 2, -22, 10, -3, 33, 3, -1, 10]); A.charpoly()

x"3 +1

sage: A.eigenspaces_right(format=’galois’)

L

(-1, Vector space of degree 3 and dimension 1 over Rational Field ...),

(a1, Vector space of degree 3 and dimension 1 over
Number Field in al with defining polynomial x72 - x + 1
User basis matrix:

L 1 1/2%al - 2 -1/21)

]

4. Even if Sage does not directly compute eigenvalues for matrices over some exotic ring, other
tools may provide information you desire. For example, the fcp() method, which returns
the factored characteristic polynomial, is often useful.
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F.<a> = FiniteField(3°2);

A = matrix(F, 3, 3, [2*a, a, 2*a, 0, 2, a + 2, 2, a, 2*a]); A.fcp()
a+ 1) x (x72 + axx + 2)

(A - (-a-1)*identity matrix(3)).right kernel() # an eigenspace

Vector space of degree 3 and dimension 1 over Finite Field in a of size 372 ...

91.6 Vector Spaces

You can use VectorSpace objects to work directly with vector spaces.

Definitions:

1. The basis matrix of a vector space has the basis vectors of the vector space as its rows.

By default, Sage will store and use a canonical echelonized basis for a vector space (i.e.,

the basis matrix will be a matrix in reduced row-echelon form). A user basis can also be

explicitly used (see below for examples).

2. Vectors in a vector space V over a field F also live in some ambient vector space F".

The degree of V' is n. The dimension or rank of V' is the size of the basis. A vector space

is full if its degree equals its dimension.

Commands:

1. Constructors

(a)

N~
o
—

The simplest way to create a vector space is to raise a field to a power (in
general, raising a ring to a power will construct a free module). We can also use
VectorSpace directly by providing a field and a dimension.

The parent () method of a vector returns the vector space containing the vector.
The span() command constructs the vector space spanned by a list of vectors.

Use the subspace () method to construct subspaces. The
subspace_with basis() method allows specifying a “user basis”.

2. Properties

(a)
(a)

(b)

(d)

v in V tests if the vector v is in the vector space V.

Check if two vector spaces V and W are equal with V == W. Check if V is a
subspace of W using V.is_subspace(W).

The basis (canonical basis) of a vector space is returned by the basis()
(echelonized basis()) method. The corresponding basis matrix() and
echelonized _basis matrix() methods return matrices in which the basis vec-
tors are the rows.

An element of a vector space can be expressed as a linear combination of the
basis vectors (which are canonical by default). The scalars (i.e., coordinates) can
be returned as a list (using the coordinates() method) or as a vector (using
the coordinate_vector () method).

The linear_dependence() method takes a list of vectors and returns the coef-
ficients of a nontrivial linear combination that equals zero. An empty sequence
is returned if the vectors are linearly independent.

3. We can intersect two vector spaces (U.intersection(V)), add them (U + V), form

their

direct sum (U.direct_sum(V)), and take their quotient (U / V).
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Examples:

1. Create a vector space, or more generally, a free module like ZZ"3.

sage: QQ°3

Vector space of dimension 3 over Rational Field
sage: VectorSpace(RDF, 3)

Vector space of dimension 3 over Real Double Field

2. Construct subspaces.

sage: u = vector(QQ, [1, 2, 3]); v = vector(QQ, [-3, 0, 31)
sage: S

span([u,v]); S # basis echelonized, not (u,v)

Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:

[1 o0 -1]

[0 1 2]

sage: T = S.subspace([u + v]); T # the basis matrix is canonical
Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:

[1-1-3]

sage: U = S.subspace_with basis([u + v]); U # basis not echelonized
Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:

[-2 2 6]

3. Properties of vector spaces.

sage: u = vector(QQ, [1, 2, 3]); v = vector(QQ, [-1, 0, 11)

sage: W = span([u,v]); V = W.ambient_vector_space()

sage: W.degree(), W.dimension(), W.rank(), W.is_full(), V.is_full(), V == QQ"3
(3, 2, 2, False, True, True)

sage: S = span([v]); S.is_subspace(W), S == span([-v])

(True, True)

4. Vectors as elements of vector spaces. The coordinates() method below returns a Python
list, while the coordinate_vector () method returns an actual vector.

sage: u = vector(QQ, [1, 2, 3]); v = vector(QQ, [-1, 0, 1]); x = 3%u - 7*v

sage: W = span([u,v]); W

Vector space of degree 3 and dimension 2 over Rational Field ...

sage: x in W, vector(QQ, [3, 7, 195]) in W

(True, False)

sage: W.coordinates(x), W.coordinate_vector(x) # relative to the canonical basis
([10, 61, (10, 6))

sage: X = (QQ~3).subspace_with basis([u, v]); X

Vector space of degree 3 and dimension 2 over Rational Field

User basis matrix:

[1 2 3]

[-1 0 1]

sage: X.coordinate vector(x) # relative to the user basis
3, -N

sage: X.linear_combination_of_basis([3, -7])
(10, 6, 2)
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5. Vector space arithmetic.

sage: u = vector(QQ, [1,2,2]); v = vector(QQ, [-1,0,4])

sage: w = vector(QQ, [2,1,5])

sage: U = span([u + v, u - 3*v]); W = span([v + w, 5xv - 6%w])
sage: U.intersection(W)

Vector space of degree 3 and dimension 1 over Rational Field ...
sage: U + W

Vector space of degree 3 and dimension 3 over Rational Field ...
sage: U.direct_sum(W)

Vector space of degree 6 and dimension 4 over Rational Field ...

sage: u = vector(QQ, [1,2,2,5,3]); v = vector(QQ, [-1,0,4,3,1])
sage: U = span([u, v]); Q = (QQ"5).quotient(U); Q.dimension()
3

sage: phi = Q.quotient map(); phi

Vector space morphism ...
sage: phi.kernel() ==
True

91.7 Linear Transformations

Commands:

1. If A is a matrix, linear_transformation(A) constructs the transformation x — xA.
Warning: Notice again the preference for a product with the vector on the left. The
domain and codomain are inferred from the base ring and matrix dimensions. Create
the linear transformation x — Ax by linear transformation(A, side=’right’),
which just transposes A to create a left-sided version; the matrix stored and printed
by the linear transformation is understood as the left version.

2. We can specify the rule for a linear transformation using a lambda function, a Python
function defined with the def keyword, a symbolic function, or by a list of images for
the elements of the domain’s basis in place of the matrix A.

3. If T is a linear transformation and v is a vector, T(v) computes the image of v.

4. T.is_surjective() and T.is_injective() query properties of a transformation 7.

5. T.image(), T.kernel(), and T.inverse_image (V) construct related vector spaces.

6. Compose linear transformations by multiplying them together.

7. T.restrict_domain() and T.restrict_codomain() construct new transformations.

Examples:

1. Construct some linear transformations.

sage: A = matrix(QQ, 2, 3, range(6)); A
(01 2]

[3 4 5]

sage: T = linear_transformation(A); T

Vector space morphism represented by the matrix:
(01 2]
[3 4 5]
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Domain: Vector space of dimension 2 over Rational Field
Codomain: Vector space of dimension 3 over Rational Field
sage: U = linear_transformation(A, side=’right’); U
Vector space morphism represented by the matrix:

[0 3]

[1 4]

[2 5]

Domain: Vector space of dimension 3 over Rational Field
Codomain: Vector space of dimension 2 over Rational Field
sage: v = vector(QQ, [2,3,1]); U(v) == A x v

True

We can give the domain and codomain explicitly. The matrix is interpreted (and printed)
as the representation relative to the bases of the domain and codomain.

sage: V = (QQ"2) .subspace_with basis([vector(QQ, [-1, 11)1)

sage: W = (QQ~3).subspace_with basis([vector(QQ, [0,1,0]), vector(QQ, [0,0,11)1)
sage: A = matrix(QQ, [[2,5]11); T = linear transformation(V, W, A); T
Vector space morphism represented by the matrix:

[2 5]

Domain: Vector space of degree 2 and dimension 1 over Rational Field ...
Codomain: Vector space of degree 3 and dimension 2 over Rational Field
User basis matrix:

[0 1 0]

[0 0 1]

sage: v = vector(QQ, [-4, 41); T(v)

(0, 8, 20)

sage: V.coordinate_vector(v) * T.matrix() * W.basismatrix() # check
(0, 8, 20)

The third argument may be a function or list of images instead of a matrix.

sage: f = lambda x: vector(QQ, [2*x[0] + x[2], 5*x[1] - 6*x[2]])
sage: T = linear_transformation(QQ~3, QQ~2, £); T
Vector space morphism represented by the matrix:

[ 2 o]
[0 5]
[1-6]

Domain: Vector space of dimension 3 over Rational Field
Codomain: Vector space of dimension 2 over Rational Field

sage: images = [vector(QQ, [1,2]1), vector(QQ, [-2,41)]
sage: T = linear_transformation(QQ~2, QQ~2, images); T
Vector space morphism represented by the matrix:

[1 2]

[-2 4]

Domain: Vector space of dimension 2 over Rational Field
Codomain: Vector space of dimension 2 over Rational Field

Query properties of a linear transformation.

sage: A = matrix(QQ, 2, 3, range(6))

sage: T = linear_transformation(A)

sage: T.is_surjective(), T.is_injective(), T.image() == T(QQ"2)
(False, True, True)

sage: T.image()

Vector space of degree 3 and dimension 2 over Rational Field ...
sage: T.kernel()
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Vector space of degree 2 and dimension O over Rational Field ...
sage: W = (QQ~3).subspace([vector(QQ, [2,3,4]1)]); T.inverse_image(W)
Vector space of degree 2 and dimension 1 over Rational Field ...

3. Composing and restricting linear transformations.

sage: A = matrix(QQ, [[2, 4, 2], [3, 6, 3]11)
sage: T = linear_transformation(A); v = vector(QQ, [10, -15])

sage: T(v)

(-25, -50, -25)

sage: U = linear_transformation(diagonal matrix([1, 1/2, 1/5]))
sage: (U x T)(v)

(-25, -25, -5)

sage: new_domain = (QQ~2).subspace([vector(QQ, [2,-3]1)1)

sage: S = T.restrict_domain(new_domain); S

Vector space morphism represented by the matrix:

[-5/2 -5 -5/2]

Domain: Vector space of degree 2 and dimension 1 over Rational Field ...
Codomain: Vector space of dimension 3 over Rational Field

sage: S(vector(QQ, [10, -15]))

(-25, -50, -25)

Note that the matrix representations of the restrictions are with respect to the echelonized
bases of the new subspaces.

91.8 Graphics

Sage has extensive capabilities for drawing 2D and 3D pictures and graphs. We demonstrate
just a few of these capabilities here; see the Sage documentation for many more plotting
capabilities.

Examples:

1. Vectors: v.plot(start=u) plots a vector v starting at u. Adding graphics objects super-
imposes them. Use show() to show a plot or use the save () method of a graphics object to
save the plot to a file. We can save plots in a variety of formats (e.g., png, jpg, pdf, eps, svg,
etc.). See Figure [01.1]

sage: u = vector(QQ, [1,2]); v = vector(QQ, [1,-11)
sage: p = v.plot() + u.plot(start=v) + (u+v).plot(linestyle=’dashed’)
sage: show(p) # show picture

sage: p.save(’vectorplot.pdf’) # save as a pdf file

2. Matrices: Sage plots matrices as rectangular arrays by mapping entry values to colors. A
user-specified color map (rules for how values map to colors) can be given and a legend-like
color bar can be added. In the following example (Figure , we plot a Toeplitz matrix;
you can clearly see the banded structure.

sage: from scipy.linalg import toeplitz
sage: A = matrix(QQ,toeplitz([cos(i) for i in range(10)]1))
sage: A.plot(colorbar=True)
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FIGURE 91.1: Vector plot.

FIGURE 91.2: Matrix plots.

Sparse matrices plot their nonzero values. Here we construct the adjacency matrix of the
Buckyball graph and plot its structure (Figure [91.2b)).

sage: A = graphs.BuckyBall().adjacency.matrix(sparse=True)
sage: A.plot()

91.9 Conversion to Other Forms

Examples:

1. Sage can convert a vector or matrix to a Python dictionary (v.dict(); returns indices and
entries), a Python list (v.1ist()), or a NumPy array (v.numpy()).

sage: v = vector(QQ, [1,2,3]1); v.dict()

{0: 1, 1: 2, 2: 3}

sage: A = matrix(QQ, [[1,2],[3,4]11); A.list(Q)
[1, 2, 3, 4]

2. The IATEX code for a vector or matrix can be generated using the latex() method:
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sage: latex(vector(QQ, [1,2,3]))
\left(1,\,2,\,3\right)

sage: latex(matrix(QQ, 2, [1,2,3,4/71))
\left (\begin{array}{rr}

1 & 2 \\

3 & \frac{4}{7}

\end{array}\right)

3. You can change IATEX delimiters using the following functions: latex.vector_delimiters(),
latex.matrix delimiters(). If you use a delimiter that has a backslash, use two backslashes
when specifying it, like >\\langle’, or prefix the string with r, like r’\langle’.

sage: latex.vector_delimiters(’\\langle’, r’\rangle’)
sage: latex(vector(QQ, [1,2,3/7]))
\left\langlel,\,2,\,\frac{3}{7}\right\rangle

91.10 General Rings

As mentioned earlier, every matrix and vector knows what ring in which its entries live,
and this determines how a matrix prints, algorithms and libraries used to do the compu-
tations, methods available, etc. Sage also supports many more rings and fields than we
have mentioned, including cyclotomic fields, number fields, and univariate and multivariate
polynomial rings.

Examples:

1. The following matrix is invertible over the rationals, but not over the integers:

sage: A = matrix(QQ,2,[1,2,3,4])
sage: A.is_invertible(), A.change_ring(ZZ).is_invertible()
(True, False)

2. Sometimes matrices over certain fields support additional methods. For example, a symbolic
matrix has a subs() method to substitute values in for variables:

sage: x,y,z = var(’x,y,z’); A = matrix(SR, [[x,x-3x*y,z],[x*z,0,y-x]1])
sage: A.subs(x=3, y=2)

[ 3 -3 Z]

[3*z 0 -1]

3. Finite fields: See Chapter 31 for more about matrices over finite fields.

(a) Use the FiniteField command or its shorthand GF (“Galois Field”) to construct a
finite field, specifying a name for the (multiplicative) generator if needed.

sage: FiniteField(37), GF(next_prime(1075))
(Finite Field of size 37, Finite Field of size 100003)
sage: F = GF(372, ’a’); F.list()
[0, 2xa, a + 1, a + 2, 2, a, 2%a + 2, 2%xa + 1, 1]
sage: F.<a> = GF(279); a"101
a’7 + a6 +a’4+ a3 +1
(b) Linear algebra can be done over these finite fields just like any other ring. Special im-
plementations take advantage of different field characteristics to efficiently implement
these. Linear algebra over GF(2) is particularly optimized.
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sage: A = matrix(GF(5), 2, [1,2,3,14]); A.charpoly()

x"2 + 3
sage: A+ A, A”-1, A™-1 x A
(

[2 4] [3 1] [1 0]

[1 3], [4 2], [0 1]

)

sage: B = matrix(GF(37), 3, [1,2,3,4,5,6,7,8,101); b = vector([1,2,3])
sage: B x b, B\ b

((14, 32, 16), (12, 13, 0))

c¢) Matrices over finite fields also support extra methods. Comparing a matrix to 1 com-
g
pares it to the identity matrix.

sage: A = matrix(GF(37), 3, [1..8,10])

sage: A.multiplicative order(), A~684 ==
(684, True)

1 Numerical Linear Algebra

Facts:

. The fields RDF and CDF are fast machine-level double-precision floating point reals

and complexes (respectively). Many of the algorithms for matrices over RDF and CDF
are provided by SciPy/NumPy and use industry-standard libraries like LAPACK.

. The fields RealField(prec) and ComplexField(prec) provide reals and complexes

to any fixed precision (prec is the number of bits used for the mantissa), e.g.,
RealField(20) has 20 bits of precision. In Sage, RR is RealField(53) and CC is
ComplexField(53). A floating point number is in RR or CC by default, so a matrix or
vector with floating point entries is over RR or CC unless another ring is specified.

. We emphasize that RR and CC are not exactly the same as RDF and CDF since RR and

CC are not implemented with machine-level floating point numbers. The RealField
and ComplexField fields (like RR and CC) are instead implemented with rigorous and
portable semantics, and thus are usually slower. More importantly, algorithms for
matrices over RealField, and ComplexField are not specialized for numerical work,
so they may return misleading results because of numerical error.

Since the v.n() and A.n() numerical approximation methods return objects over RR
or CC, if you are doing numerical computations, it is preferable to convert your objects
to RDF or CDF using the change_ring() method, e.g., v.change _ring(RDF).

. RDF and CDF matrices used specialized algorithms for computing eigenvalues, eigen-

vectors, and popular matrix decompositions (see the relevant sections of Section
for specific methods). Eigenvectors (and eigenspaces) are reported with multiplicity
one, for consistency with the format of results for exact matrices.

. RDF and CDF matrices use specialized algorithms to compute properties like the con-

dition number of a matrix (A.condition()), norms of vectors and matrices, matrix
exponentials, and checks for properties like unitary or Hermitian matrices.
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91.12 Applications of Linear Algebra

Sage can do many of the computations mentioned in the Handbook of Linear Algebra.

1.

Graphs [Chapters 38-40]: Sage has a comprehensive graph theory and combinatorics
library. See “Graph Theory” and “Combinatorics” in the Sage reference manual.

. Coding Theory [Chapter 73]: Sage includes a number of codes and functionality

related to coding theory. See the “Coding Theory” section of the reference manual.
Linear Programming [Chapters 68-69]: Sage comes with powerful linear program-
ming, integer programming, and semidefinite programming tools, and also interfaces
seamlessly with several industry solutions, such as CPLEX. See the “Numerical Tools”
and “Numerical Optimization” sections of the reference manual.

Minimum rank, zero forcing [Chapter 46]: A Sage library that calculates minimum
rank and zero forcing is at https://github.com/jasongrout/minimum_rank.

91.13 For More Information

1.

‘Web sites: The main web site for Sage is http://sagemath.org. The main public
Sage notebook server is http://sagenb.org.

. Sage help: Access Sage documentation by clicking “Help” in the Sage Notebook

or at http://sagemath.org/doc. Questions about how to use Sage should be ad-
dressed to either the sage-support mailing list, http://groups.google.com/group/
sage-support/, or to the http://ask.sagemath.org web site. Discussion about
Sage in education also happens on the sage-edu mailing list, http://groups.google.
com/group/sage-edu/|

Interacts: Sage makes it very easy to create interactive demonstrations that utilize
sliders, checkboxes, buttons, etc., allowing a user to easily adjust the inputs to a
computation. See a number of examples at http://wiki.sagemath.org/interact/
or the documentation for interact() (i.e., interact?) in the Sage notebook.

. Embedding Sage in a webpage: Sage computations can easily be embedded in

any webpage outside of the Sage notebook. A user can modify the Sage code, drag
sliders, etc. See https://sagecell.sagemath.org,.

. SageTeX: Sage has a very easy way to embed Sage input and output directly into a

ITEX file. This allows an author to type Sage code directly into their ITEX file, run
the latex program (which generates a Sage code file), run Sage on the resulting Sage
code file (which generates the outputs, graphics, etc.), and then run WTEX again on
their source file (which incorporates output and graphics back into the resulting pdf
document). For example, to embed a Sage plot, merely type \sageplot{plot(x~2,
(x,0,4))} in the BWTEX document, then run ITEX, Sage, then XTEX again to embed
the plot in the pdf file. See the documentation for SageTeX in the Sage tutorial.

. Fortran support: It is easy to compile and run FORTRAN code from within the

Sage notebook. For examples, see Numerical Sage in the Sage documentation.

The following resources may also be helpful.

1.

Linear Algebra Quick Reference by Robert Beezer. A two-page summary of many
linear algebra commands and constructions. http://wiki.sagemath.org/quickref,|

2. Linear Algebra with Sage by Robert Beezer. An extensive tutorial on linear alge-

bra, designed as a supplement to the textbook A First Course in Linear Algebra.
http://linear.ups.edu/sage-fcla.html,


https://github.com/jasongrout/minimum_rank
http://sagemath.org
http://sagenb.org
http://sagemath.org/doc
http://groups.google.com/group/sage-support/
http://groups.google.com/group/sage-support/
http://ask.sagemath.org
http://groups.google.com/group/sage-edu/
http://groups.google.com/group/sage-edu/
http://wiki.sagemath.org/interact/
https://sagecell.sagemath.org
http://wiki.sagemath.org/quickref
http://linear.ups.edu/sage-fcla.html
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Many numerical calculations and plots can be done using the included Python pack-
ages SciPy and NumPy (http://www.scipy.org/) and Matplotlib
(http://matplotlib.sourceforge.net/).

Python Scientific Lecture Notes. http://scipy-lectures.github.com/|

NumPy for Matlab Users. Helps in translating between MATLAB and the Python
NumPy package. http://www.scipy.org/NumPy_for_Matlab_Users. See also
http://mathesaurus.sourceforge.net/matlab-numpy.html| for another reference.
Python documentation. The official documentation is quite comprehensive and con-
tains tutorials and reference material. http://docs.python.org/|

. Python for Non-Programmers. A collection of resources introducing Python.

http://wiki.python.org/moin/BeginnersGuide/NonProgrammers,

. Dive into Python by Mark Pilgrim. A free comprehensive book introducing Python.

http://www.diveintopython.net/.


http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://scipy-lectures.github.com/
http://www.scipy.org/NumPy_for_Matlab_Users
http://mathesaurus.sourceforge.net/matlab-numpy.html
http://docs.python.org/
http://wiki.python.org/moin/BeginnersGuide/NonProgrammers
http://www.diveintopython.net/
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